Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting information

Refining the model to design α -chymotrypsin superactivators: the role of the binding mode of

quaternary ammonium salts

Francesco Gabriele,^a Laura Goracci,^b* Raimondo Germani,^b Nicoletta Spreti^a*

^a Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio,

I-67100 Coppito, L'Aquila, Italy.

^bDepartment of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto, 8

I-06123, Perugia, Italy.

Figure S1: Most probable binding poses for GPNA according to FLAP predictions.

Figure S2: Depiction of the mechanism of hydrolysis of GPNA, according to the GPNA reactive pose (as in Figure S1-a).

Figure S3: Simultaneous visualization of GPNA and PhPrTMABr docked into the α -CT cavity, with the protein in cartoon mode to highlight the proximity between the ammonium moiety of the additive and the carboxylate moiety of the substrate.

Figure S4: Most probable binding poses for bisBAB (a), bisEDuBAB (b) and bisEOMeBAB (c). For each additive, the ten top-ranked binding poses were analyzed and clusterized in the two most different poses, associated to a percentage of occurrence. The similarity score S calculated according to the Glob-Prod descriptor of FLAP is provided (S195:serine 195; H57: histidine 57; W215: tryptophan 215; D102: aspartate 102).

Figure S5: Most probable binding poses for bisEOMeEAB according to FLAP predictions.

Figure S6: Simultaneous visualization of GPNA and bisEDuEAB docked into the α -CT cavity.