Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

# SUPPLEMENTARY INFORMATION

## The AI=AI triple bond in $AI_2X_5^+$ and $AI_2X_6^{2+}(X=Li, Na)$ clusters with

### multiple alkali metals coordination

#### Yingying Liu<sup>a</sup>, Changyan Zhu<sup>a</sup>, Chaoxia Wen<sup>a</sup>, Min Zhang<sup>\*a</sup>, Yun Geng<sup>a</sup>, Xingman Liu<sup>\*b</sup>, Zhongmin Su<sup>ac</sup>

a Institute of Functional Material Chemistry, Faculty of Chemistry & National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P.R. China.

*b* College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.

c. School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China.

E-mail: mzhang@nenu.edu.cn liuxm2020@nxu.edu.cn

## **Table of Contents**

**S4 Figure S1.** Optimized GEM structures together with important bond distances (in/Å) and WBIs of  $D_{4h}$ -Al<sub>2</sub>Li<sub>4</sub> (a) and  $D_{4h}$ -Al<sub>2</sub>Na<sub>4</sub>(b) at the CCSD/6-311G(d) level.

S4 Figure S2. The lowest-lying isomers of  $Al_2Li_5^+$ . Optimized structures at the B3LYP/def2-TZVP level, relative single-point energies (kcal/mol) at the CCSD/6-311G(d) level.

S5 Figure S3. The lowest-lying isomers of  $Al_2Li_6^{2+}$ . Optimized structures at the B3LYP/def2-TZVP level, relative single-point energies (kcal/mol) at the CCSD/6-311G(d) level.

S6 Figure S4. The lowest-lying isomers of  $Al_2Na_5^+$ . Optimized structures at the B3LYP/def2-TZVP level, relative single-point energies (kcal/mol) at the CCSD/6-311G(d)level.

**S7 Figure S5.** The lowest-lying isomers of  $Al_2Na_6^{2+}$ . Optimized structures at the B3LYP/def2-TZVP level, relative single-point energies (kcal/mol) at the CCSD/6-311G(d) level.

**S8 Table S1.** Important results information of the clusters, including the spin states, relative energies (kcal/mol), Al-Al bond length (R/Å), Wiberg Bond Indices (WBI<sub>Al-Al</sub>) and NPA charge (NPA/|e|). They all calculated at the B3LYP/def2-TZVP level.

**S9 Figure S6**. Optimized GEM structures at the CCSD/6-311G(d) level for  $C_1$ -Al<sub>2</sub>Li<sub>5</sub> (a),  $C_1$ -Al<sub>2</sub>Li<sub>6</sub> (b),  $C_1$ -Al<sub>2</sub>Na<sub>5</sub> (c) and  $C_1$ -Al<sub>2</sub>Na<sub>6</sub> (d). Together with important bond distances (in/Å) and Wiberg bond indices (WBIs) at the same level.

**S10 Figure S7.** The lowest-lying isomers of  $Al_2Li_5$ . Optimized structures at B3LYP/def2-TZVP level, relative energies (kcal/mol) at the CCSD/6-311G(d) level.

**S11 Figure S8.** The lowest-lying isomers of  $Al_2Li_6$ . Optimized structures at B3LYP/def2-TZVP level, relative single-point energies (kcal/mol) at the CCSD/6-311G(d) level.

S12 Figure S9. The lowest-lying isomers of  $Al_2Na_5$ . Optimized structures at B3LYP/def2-TZVP level, relative single-point energies (kcal/mol) at CCSD/6-311G(d) level.

**S13 Figure S10.** The lowest-lying isomers of  $Al_2Na_6$ . Optimized structures at B3LYP/def2-TZVP level, relative single-point energies (kcal/mol) at the CCSD/6-311G(d) level.

**S14 Table S2.** Important results information of the clusters, including the spin states, relative energies (kcal/mol), Al-Al bond length (R/Å), Wiberg Bond Indices (WBI<sub>Al-Al</sub>) and NPA charge (NPA/|e|). They all calculated at the B3LYP/def2-TZVP level.

**S15 Figuer S11**. Root-mean-square deviations (RMSD) of  $Al_2Li_5^+$  (a),  $Al_2Li_6^{2+}$  (b),  $Al_2Na_5^+$  (c) and  $Al_2Na_6^{2+}$  (d) during Born-Oppenheimer molecular dynamics (BOMD) simulations at 298K. The initial and final structural snapshots are also shown here.

**S16 Figure S12**. The global minimum of  $C_{4v}$ -Al<sub>2</sub>Li<sub>5</sub><sup>+</sup> (a), D<sub>4h</sub>-Al<sub>2</sub>Li<sub>6</sub><sup>2+</sup> (b) and D<sub>4h</sub>-Al<sub>2</sub>Na<sub>6</sub><sup>2+</sup> (c) and their important FMOs under the CCSD/6-311G(d) level.

**S17 Figure S13.** The dominant FMO correlation diagram in  $Al_2Na_6^{2+}$  between  $Al_2$  and  $Na_6^{2+}$  fragments calculated at the CCSD/6-311G(d) level. The horizontal dashed and solid lines represent virtual and occupied molecular orbitals, respectively. (the

orbital energies are also given, unit: eV).

**S17 Figure S14**. a) AdNDP orbitals. b) LOL profile. c) ELF profile for  $Al_2Li_5^+$  at the CCSD/6-311G(d) level. ON stands for the occupation number.

**S18 Figure S15**. a) AdNDP orbitals. b) LOL profile. c) ELF profile for  $Al_2Li_6^{2+}$  at the CCSD/6-311G(d) level. ON stands for the occupation number.

**S18 Figure S16**. a) AdNDP orbitals. b) LOL profile. c) ELF profile for  $Al_2Na_6^{2+}$  at the CCSD/6-311G(d) level. ON stands for the occupation number.

**S19 Figure S17.** Laplacian plot of the electron density  $\nabla^2 \rho(r)$ , of Al<sub>2</sub>Li<sub>5</sub><sup>+</sup>(a), Al<sub>2</sub>Li<sub>6</sub><sup>2+</sup>(b), Al<sub>2</sub>Na<sub>6</sub><sup>2+</sup>(c) in different perspectives. Solid and dashed lines correspond to positive and negative regions of  $\nabla^2 \rho$ , respectively.

**S20 Scheme 1.** Several potential reactions and thermodynamic values for the generation of  $C_1$ -Al<sub>2</sub>Li<sub>5</sub>,  $C_{4V}$ -Al<sub>2</sub>Li<sub>5</sub><sup>+</sup>,  $C_1$ -Al<sub>2</sub>Li<sub>6</sub>,  $D_{4h}$ -Al<sub>2</sub>Li<sub>6</sub><sup>2+</sup>,  $C_1$ -Al<sub>2</sub>Na<sub>5</sub>,  $D_{3h}$ -Al<sub>2</sub>Na<sub>5</sub><sup>+</sup>,  $C_1$ -Al<sub>2</sub>Na<sub>6</sub> and  $D_{4h}$ -Al<sub>2</sub>Na<sub>6</sub><sup>2+</sup>.

**S21 Table S3.** Cartesian coordinates for optimized structures of  $Al_2Li_5^+$ ,  $Al_2Li_6^{2+}$ ,  $Al_2Na_5^+$ , and  $Al_2Na_6^{2+}$  at the CCSD/6-311G(d) level.

S22 Table S4. Cartesian coordinates for optimized structures of  $Al_2Li_5$ ,  $Al_2Li_6$ ,  $Al_2Na_5$ , and  $Al_2Na_6$  at the CCSD/6-311G(d) level.



**Figure S1.** Optimized GEM structures together with important bond distances (in/Å) and WBIs of  $D_{4h}$ -Al<sub>2</sub>Li<sub>4</sub> (a), and  $D_{4h}$ -Al<sub>2</sub>Na<sub>4</sub>(b) at the CCSD/6-311G(d) level.



Figure S2. The lowest-lying isomers of  $Al_2Li_5^+$ . Optimized structures at the B3LYP/def2-TZVP level, relative single-point energies (kcal/mol) at the CCSD/6-311G(d) level.



**Figure S3.** The lowest-lying isomers of  $Al_2Li_6^{2+}$ . Optimized structures at the B3LYP/def2-TZVP level, relative single-point energies (kcal/mol) at the CCSD/6-311G(d) level.



Figure S4. The lowest-lying isomers of  $Al_2Na_5^+$ . Optimized structures at the B3LYP/def2-TZVP level, relative single-point energies (kcal/mol) at the CCSD/6-311G(d)level.



**Figure S5.** The lowest-lying isomers of  $Al_2Na_6^{2+}$ . Optimized structures at the B3LYP/def2-TZVP level, relative single-point energies (kcal/mol) at the CCSD/6-311G(d) level.

**Table S1.** Important results information of the structures of clusters, including the spin states, relative energies (kcal/mol), Al-Al bond length (R/Å), Wiberg Bond Indices (WBI<sub>Al-Al</sub>) and NPA charge (NPA/|e|). They all calculated at the B3LYP/def2-TZVP level.

| Molecule-    | Spin States | Relative           | R <sub>AI-AI</sub> (Å) | WBI <sub>AI-AI</sub> | NPA <sub>AI-AI</sub> ( e ) |
|--------------|-------------|--------------------|------------------------|----------------------|----------------------------|
| $Al_2Li_5^+$ |             | Energies(kcal/mol) |                        |                      |                            |
| Ι            | Singlet     | 0.0                | 2.52                   | 2.50                 | -1.529                     |
| П            | Singlet     | 1.5                | 2.43                   | 2.76                 | -0.795                     |
| III          | Triplet     | 13.3               | 2.54                   | 1.61                 | -1.031                     |
| IV           | Triplet     | 18.4               | 2.48                   | 1.30                 | -1.199                     |
| V            | Triplet     | 19.6               | 2.54                   | 1.60                 | -1.223                     |
| VI           | Triplet     | 27.2               | 2.49                   | 1.55                 | -0.558                     |

| Molecule-       | Spin States | Relative           | R <sub>AI-AI</sub> (Å) | WBI <sub>AI-AI</sub> | NPA <sub>Al-Al</sub> ( e ) |
|-----------------|-------------|--------------------|------------------------|----------------------|----------------------------|
| $Al_2Li_6^{2+}$ |             | Energies(kcal/mol) |                        |                      |                            |
| Ι               | Singlet     | 0.0                | 2.45                   | 2.73                 | -1.708                     |
| Π               | Singlet     | 19.0               | 2.50                   | 2.29                 | -1.364                     |
| Ш               | Triplet     | 25.6               | 2.52                   | 1.70                 | -1.340                     |
| IV              | Triplet     | 31.0               | 2.45                   | 2.18                 | -1.111                     |
| V               | Singlet     | 31.6               | 2.36                   | 2.47                 | -0.558                     |
| VI              | Triplet     | 35.0               | 2.48                   | 1.76                 | -1.045                     |
|                 |             |                    |                        |                      |                            |

| Molecule-<br>Al₂Na₅⁺ | Spin States | Relative<br>Energies(kcal/mol) | R <sub>AI-AI</sub> (Å) | WBI <sub>AI-AI</sub> | NPA <sub>Al-Al</sub> ( e ) |
|----------------------|-------------|--------------------------------|------------------------|----------------------|----------------------------|
| I                    | Singlet     | 0.0                            | 2.44                   | 2.64                 | -1.547                     |
| II                   | Singlet     | 2.2                            | 2.51                   | 2.29                 | -1.247                     |
| III                  | Triplet     | 15.1                           | 2.55                   | 1.92                 | -1.034                     |
| IV                   | Triplet     | 16.2                           | 2.51                   | 2.01                 | -0.932                     |
| V                    | Triplet     | 18.1                           | 2.53                   | 2.02                 | -0.901                     |
| VI                   | Triplet     | 20.7                           | 2.54                   | 1.79                 | -1.127                     |
| VI                   | Singlet     | 21.9                           | 2.42                   | 2.54                 | -0.650                     |

| Molecule-                                     | Spin States | Relative           | R <sub>AI-AI</sub> (Å) | WBI <sub>AI-AI</sub> | NPA <sub>AI-AI</sub> ( e ) |
|-----------------------------------------------|-------------|--------------------|------------------------|----------------------|----------------------------|
| Al <sub>2</sub> Na <sub>6</sub> <sup>2+</sup> |             | Energies(kcal/mol) |                        |                      |                            |
| I                                             | Singlet     | 0.0                | 2.47                   | 2.55                 | -1.551                     |
| П                                             | Singlet     | 17.4               | 2.49                   | 2.40                 | -1.318                     |
| Ш                                             | Triplet     | 24.0               | 2.45                   | 2.35                 | -1.092                     |
| IV                                            | Triplet     | 24.1               | 2.48                   | 2.19                 | -1.101                     |
| v                                             | Triplet     | 26.5               | 2.56                   | 1.82                 | -1.327                     |
| VI                                            | Triplet     | 26.5               | 2.46                   | 2.16                 | -1.087                     |
| VII                                           | Singlet     | 29.3               | 2.40                   | 2.68                 | -0.714                     |
| VIII                                          | Singlet     | 30.0               | 2.41                   | 2.64                 | -0.716                     |
| IX                                            | Triplet     | 30.5               | 2.55                   | 1.80                 | -1.357                     |



**Figure S6**. Optimized GEM structures at the CCSD/6-311G(d) level for  $C_1$ -Al<sub>2</sub>Li<sub>5</sub> (a),  $C_1$ -Al<sub>2</sub>Li<sub>6</sub> (b),  $C_1$ -Al<sub>2</sub>Na<sub>5</sub> (c) and  $C_1$ -Al<sub>2</sub>Na<sub>6</sub> (d). Together with important bond distances (in/Å) and Wiberg bond indices (WBIs) at the same level.



**Figure S7.** The lowest-lying isomers of  $Al_2Li_5$ . Optimized structures at the B3LYP/def2-TZVP level, relative energies (kcal/mol) at the CCSD/6-311G(d) level.



Figure S8. The lowest-lying isomers of  $Al_2Li_6$ . Optimized structures at the B3LYP/def2-TZVP level, relative single-point energies (kcal/mol) at the CCSD/6-311G(d) level.



Figure S9. The lowest-lying isomers of  $Al_2Na_5$ . Optimized structures at the B3LYP/def2-TZVP level, relative single-point energies (kcal/mol) at the CCSD/6-311G(d) level.



Figure S10. The lowest-lying isomers of  $Al_2Na_6$ . Optimized structures at the B3LYP/def2-TZVP level, relative single-point energies (kcal/mol) at the CCSD/6-311G(d) level.

**Table S2.** Important results information of the structures of clusters, including the spin states, relative energies (kcal/mol), Al-Al bond length (R/Å), Wiberg Bond Indices (WBI<sub>Al-Al</sub>) and NPA charge (NPA/|e|). They all calculated at the B3LYP/def2-TZVP level.

| Molecule-                       | Spin States | Relative           | R <sub>AI-AI</sub> (Å) | WBI  | NPA <sub>AI-AI</sub> ( e ) |
|---------------------------------|-------------|--------------------|------------------------|------|----------------------------|
| Al <sub>2</sub> Li <sub>5</sub> |             | Energies(Kcal/mol) |                        |      |                            |
| Ι                               | Doublet     | 0.0                | 2.47                   | 2.41 | -1.172                     |
| II                              | Doublet     | 1.0                | 2.57                   | 1.69 | -1.063                     |
| III                             | Doublet     | 2.8                | 2.56                   | 1.58 | -1.085                     |
| IV                              | Doublet     | 3.1                | 2.45                   | 1.81 | -0.679                     |
| V                               | Doublet     | 3.2                | 2.46                   | 1.80 | -0.698                     |
| VI                              | Doublet     | 3.4                | 2.67                   | 1.14 | -0.993                     |
| VII                             | Doublet     | 4.0                | 2.55                   | 1.60 | -1.010                     |
| VIII                            | Doublet     | 12.7               | 2.49                   | 1.58 | -0.982                     |
| IX                              | Doublet     | 20.5               | 2.51                   | 1.50 | -0.719                     |

| Molecule-                       | Spin States | Relative           | R <sub>AI-AI</sub> (Å) | WBI  | NPA <sub>Al-Al</sub> ( e ) |
|---------------------------------|-------------|--------------------|------------------------|------|----------------------------|
| Al <sub>2</sub> Li <sub>6</sub> |             | Energies(Kcal/mol) |                        |      |                            |
| Ι                               | Singlet     | 0.0                | 2.54                   | 2.38 | -1.548                     |
| II                              | Singlet     | 3.9                | 2.71                   | 1.52 | -1.237                     |
| III                             | Triplet     | 4.5                | 2.57                   | 1.41 | -0.891                     |
| IV                              | Singlet     | 4.9                | 2.45                   | 2.00 | -0.998                     |
| V                               | Singlet     | 5.1                | 2.66                   | 1.44 | -1.326                     |
| VI                              | Singlet     | 7.4                | 2.70                   | 1.26 | -1.388                     |
| VII                             | Triplet     | 8.3                | 2.56                   | 1.39 | -1.069                     |
| VIII                            | Triplet     | 9.8                | 2.59                   | 1.37 | -1.189                     |
| IX                              | Triplet     | 11.7               | 2.63                   | 1.10 | -0.9569                    |

| Molecule-<br>Al <sub>2</sub> Na <sub>5</sub> | Spin States | Relative<br>Energies(Kcal/mol) | R <sub>AI-AI</sub> (Å) | WBI  | NPA <sub>AI-AI</sub> ( e ) |
|----------------------------------------------|-------------|--------------------------------|------------------------|------|----------------------------|
| Ι                                            | Doublet     | 0.0                            | 2.52                   | 2.35 | -1.133                     |
| II                                           | Doublet     | 3.2                            | 2.54                   | 1.98 | -1.066                     |
| III                                          | Doublet     | 3.5                            | 2.50                   | 1.89 | -0.805                     |
| IV                                           | Doublet     | 5.9                            | 2.50                   | 1.92 | -1.034                     |
| V                                            | Doublet     | 7.5                            | 2.51                   | 1.86 | -0.793                     |
| VI                                           | Doublet     | 10.6                           | 2.52                   | 1.62 | -0.694                     |
| VII                                          | Doublet     | 11.4                           | 2.51                   | 1.70 | -0.896                     |
| VIII                                         | Doublet     | 11.8                           | 2.57                   | 1.42 | -0.866                     |
| IX                                           | Doublet     | 14.8                           | 2.53                   | 2.13 | -1.116                     |

| Molecule-  | Spin States | Relative           | R <sub>Al-Al</sub> (Å) | WBI  | NPA <sub>Al-Al</sub> ( e ) |
|------------|-------------|--------------------|------------------------|------|----------------------------|
| $AI_2Na_6$ |             | Energies(Kcal/mol) |                        |      |                            |
| Ι          | Singlet     | 0.0                | 2.53                   | 2.47 | -1.4329                    |
| II         | Singlet     | 4.7                | 2.57                   | 1.94 | -1.1685                    |
| III        | Singlet     | 6.1                | 2.56                   | 1.92 | -1.0862                    |
| IV         | Triplet     | 6.2                | 2.60                   | 1.69 | -1.2637                    |
| V          | Singlet     | 6.3                | 2.54                   | 1.84 | -0.9441                    |
| VI         | Triplet     | 9.4                | 2.56                   | 1.67 | -0.9472                    |
| VII        | Triplet     | 9.4                | 2.52                   | 1.86 | -0.9623                    |
| VIII       | Triplet     | 10.5               | 2.55                   | 1.71 | -1.1620                    |
| IX         | Singlet     | 10.9               | 2.56                   | 1.48 | -0.7725                    |



**Figuer S11**. Root-mean-square deviations (RMSD) of  $Al_2Li_5^+$  (a),  $Al_2Li_6^{2+}$  (b),  $Al_2Na_5^+$  (c) and  $Al_2Na_6^{2+}$  (d) during Born-Oppenheimer molecular dynamics (BOMD) simulations at 298K. The initial and final structural snapshots are also shown here.



**Figure S12**. The global minimum of  $C_{4v}$ -Al<sub>2</sub>Li<sub>5</sub><sup>+</sup> (a), D<sub>4h</sub>-Al<sub>2</sub>Li<sub>6</sub><sup>2+</sup> (b) and D<sub>4h</sub>-Al<sub>2</sub>Na<sub>6</sub><sup>2+</sup> (c) and their important FMOs at the CCSD/6-311G(d) level.



**Figure S13.** The dominant FMO correlation diagram in  $Al_2Na_6^{2+}$  between  $Al_2$  and  $Na_6^{2+}$  fragments calculated at the CCSD/6-311G(d) level. The horizontal dashed and solid lines represent virtual and occupied molecular orbitals, respectively. (the orbital energies are also given, unit: eV).



**Figure S14**. a) AdNDP orbitals. b) LOL profile. c) ELF profile for  $Al_2Li_5^+$  at the CCSD/6-311G(d) level. ON stands for the occupation number.



**Figure S15**. a) AdNDP orbitals. b) LOL profile. c) ELF profile for  $Al_2Li_6^{2+}$  at the CCSD/6-311G(d) level. ON stands for the occupation number.



**Figure S16**. a) AdNDP orbitals. b) LOL profile. c) ELF profile for  $Al_2Na_6^{2+}$  at the CCSD/6-311G(d) level. ON stands for the occupation number.



**Figure S17.** Laplacian plot of the electron density  $\nabla^2 \rho(r)$ , of Al<sub>2</sub>Li<sub>5</sub><sup>+</sup>(a), Al<sub>2</sub>Li<sub>6</sub><sup>2+</sup>(b), Al<sub>2</sub>Na<sub>6</sub><sup>2+</sup>(c) in different perspectives. Solid and dashed lines correspond to positive and negative regions of  $\nabla^2 \rho$ , respectively.

| <b>Scheme 1.</b> Several potential reactions and thermody $C_1$ -Al <sub>2</sub> Li <sub>5</sub> , $C_{4V}$ -Al <sub>2</sub> Li <sub>5</sub> <sup>+</sup> , $C_1$ -Al <sub>2</sub> Li <sub>6</sub> , $D_{4h}$ -Al <sub>2</sub> Li <sub>6</sub> <sup>2+</sup> , $C_1$ and $D_{4h}$ -Al <sub>2</sub> Na <sub>6</sub> <sup>2+</sup> . | namic values for the generation of $_1$ -Al <sub>2</sub> Na <sub>5</sub> , $D_{3h}$ -Al <sub>2</sub> Na <sub>5</sub> <sup>+</sup> , $C_1$ -Al <sub>2</sub> Na <sub>6</sub> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $D_{4h}-Al_2Li_4+Li=C_1-Al_2Li_5$                                                                                                                                                                                                                                                                                                  | $\Delta G$ = -22.05 kcal/mol                                                                                                                                               |
| $D_{4h}$ -Al <sub>2</sub> Li <sub>4</sub> + Li <sup>+</sup> = $C_{4V}$ -Al <sub>2</sub> Li <sub>5</sub> <sup>+</sup>                                                                                                                                                                                                               | $\Delta G$ = -63.03kcal/mol                                                                                                                                                |
| $C_1 - \mathrm{Al}_2 \mathrm{Li}_5 + \mathrm{Li} = C_1 - \mathrm{Al}_2 \mathrm{Li}_6$                                                                                                                                                                                                                                              | ∆G= -29.17kcal/mol                                                                                                                                                         |
| $D_{4h}$ -Al <sub>2</sub> Li <sub>4</sub> + 2Li <sup>+</sup> = $D_{4h}$ -Al <sub>2</sub> Li <sub>6</sub> <sup>2+</sup>                                                                                                                                                                                                             | $\Delta G$ = -60.83kacl/mol                                                                                                                                                |
| $C_{4V}$ -Al <sub>2</sub> Li <sub>5</sub> <sup>+</sup> + Li <sup>+</sup> = $D_{4h}$ -Al <sub>2</sub> Li <sub>6</sub> <sup>2+</sup>                                                                                                                                                                                                 | $\Delta G= 2.19$ kcal/mol                                                                                                                                                  |
| $D_{4h}-Al_2Na_4 + Na = C_1-Al_2Na_5$                                                                                                                                                                                                                                                                                              | $\Delta G$ = -15.67kcal/mol                                                                                                                                                |
| $D_{4h}$ -Al <sub>2</sub> Na <sub>4</sub> + Na <sup>+</sup> = $D_{3h}$ -Al <sub>2</sub> Na <sub>5</sub> <sup>+</sup>                                                                                                                                                                                                               | $\Delta G$ = -56.18kacl/mol                                                                                                                                                |
| $C_1 - Al_2 Na_5 + Na = C_1 - Al_2 Na_6$                                                                                                                                                                                                                                                                                           | ∆G= -16.71kcal/mol                                                                                                                                                         |
| $D_{4h}$ -Al <sub>2</sub> Na <sub>4</sub> + 2Na <sup>+</sup> = $D_{3h}$ -Al <sub>2</sub> Na <sub>6</sub> <sup>2+</sup>                                                                                                                                                                                                             | ∆G= -51.66kcal/mol                                                                                                                                                         |
| $D_{3h}$ -Al <sub>2</sub> Na <sub>5</sub> <sup>+</sup> + Na <sup>+</sup> = $D_{4h}$ -Al <sub>2</sub> Na <sub>6</sub> <sup>2+</sup>                                                                                                                                                                                                 | $\Delta G = 4.53$ kacl/mol                                                                                                                                                 |

**Table S3.** Cartesian coordinates for optimized structures of  $Al_2Li_5^+$ ,  $Al_2Li_6^{2+}$ ,  $Al_2Na_5^+$ , and  $Al_2Na_6^{2+}$  at the CCSD/6-311G(d) level.

| $Al_2Li_5^+$ ( $C_{4x}$ | , <sup>1</sup> A)            |             |             |
|-------------------------|------------------------------|-------------|-------------|
| Li                      | 0.00000000                   | 2.42444450  | 0.39986648  |
| Li                      | 0.00000000                   | -2.42444450 | 0.39986648  |
| Li                      | 0.00000000                   | -0.00000000 | -3.71594610 |
| Li                      | -2.42444450                  | -0.00000000 | 0.39986648  |
| Li                      | 2.42444450                   | 0.00000000  | 0.39986648  |
| Al                      | 0.00000000                   | -0.00000000 | -1.02113346 |
| Al                      | 0.00000000                   | 0.00000000  | 1.51055521  |
| $Al_2Li_6^{2+}(D$       | $(4_{\rm h}, {}^{1}{\rm A})$ |             |             |
| Li                      | -0.00000000                  | 2.53027834  | 0.00000000  |
| Li                      | -2.53027834                  | -0.00000000 | 0.00000000  |
| Li                      | -0.00000000                  | -0.00000000 | -3.95040198 |
| Li                      | 0.00000000                   | -0.00000000 | 3.95040198  |
| Li                      | 2.53027834                   | 0.00000000  | 0.00000000  |
| Li                      | 0.00000000                   | -2.53027834 | 0.00000000  |
| Al                      | 0.00000000                   | 0.00000000  | 1.23073334  |
| Al                      | -0.00000000                  | 0.00000000  | -1.23073334 |
| $Al_2Na_5^+$ ( $D$      | $_{3h}$ , <sup>1</sup> A)    |             |             |
| Na                      | -0.00000000                  | 2.79534858  | 0.00000000  |
| Na                      | 0.00000000                   | -0.00000000 | -4.13069466 |
| Na                      | -2.42084289                  | -1.39767429 | 0.00000000  |
| Na                      | 2.42084289                   | -1.39767429 | 0.00000000  |
| Na                      | 0.00000000                   | -0.00000000 | 4.13069466  |
| Al                      | 0.00000000                   | 0.00000000  | 1.21780642  |
| Al                      | -0.00000000                  | 0.00000000  | -1.21780642 |
| $Al_2Na_6^{2+}$ ( L     | $D_{4h}$ , <sup>1</sup> A)   |             |             |
| Na                      | 0.00000000                   | 0.00000000  | 4.25676351  |
| Na                      | -2.88787913                  | 0.00000000  | -0.00000000 |
| Na                      | 0.00000000                   | 2.88787913  | -0.00000000 |
| Na                      | 0.00000000                   | -2.88787913 | -0.00000000 |
| Na                      | 2.88787913                   | 0.00000000  | -0.00000000 |
| Na                      | -0.00000000                  | 0.00000000  | -4.25676351 |
| Al                      | 0.00000000                   | -0.00000000 | -1.23073033 |
| Al                      | 0.00000000                   | -0.00000000 | 1.23073033  |

**Table S4.** Cartesian coordinates for optimized structures of  $Al_2Li_5$ ,  $Al_2Li_6$ ,  $Al_2Na_5$ , and  $Al_2Na_6$  at the CCSD/6-311G(d) level. **Al\_2Li\_5** ( $C_1$ , <sup>2</sup>A)

| $AI_2LI_5(C_1, A)$                                    |           |           |           |  |
|-------------------------------------------------------|-----------|-----------|-----------|--|
| Li                                                    | -1.740339 | 0.001070  | -1.362101 |  |
| Li                                                    | 2.123506  | -0.001946 | 1.663363  |  |
| Li                                                    | -4.469773 | 0.000267  | 0.000118  |  |
| Li                                                    | -1.740226 | -0.001222 | 1.361546  |  |
| Al                                                    | 0.426721  | -1.237231 | -0.000855 |  |
| Al                                                    | 0.427333  | 1.237518  | 0.000513  |  |
| Li                                                    | 2.125933  | 0.000588  | -1.661446 |  |
| $\mathbf{Al_2Li_6}\left(C_1, {}^{1}\mathrm{A}\right)$ |           |           |           |  |
| Li                                                    | -1.318905 | -0.782612 | -1.412557 |  |
| Li                                                    | 2.175948  | 0.669665  | 1.609724  |  |
| Li                                                    | 2.176645  | 0.670054  | -1.609066 |  |
| Li                                                    | -2.686713 | 1.536697  | -0.000032 |  |
| Li                                                    | -4.189791 | -1.230047 | -0.000014 |  |
| Li                                                    | -1.318715 | -0.782506 | 1.412696  |  |
| Al                                                    | 1.211967  | -1.124332 | -0.000104 |  |
| Al                                                    | -0.020845 | 1.105582  | -0.000069 |  |
| $\mathbf{Al_2Na_5}(C_1, {}^{2}\mathrm{A})$            |           |           |           |  |
| Na                                                    | -1.560299 | -1.675054 | 0.001077  |  |
| Na                                                    | 2.857283  | 1.960853  | 0.000726  |  |
| Na                                                    | -4.713753 | 0.000281  | -0.000359 |  |
| Na                                                    | -1.559958 | 1.673405  | -0.000185 |  |
| Al                                                    | 0.894843  | -0.000946 | 1.254129  |  |
| Al                                                    | 0.894688  | -0.000418 | -1.254557 |  |
| Na                                                    | 2.861826  | -1.957872 | -0.000752 |  |
| $\mathbf{Al_2Na_6}(C_1, {}^{1}\mathrm{A})$            |           |           |           |  |
| Na                                                    | 1.585168  | -0.448075 | 1.674544  |  |
| Na                                                    | 1.586491  | -0.463263 | -1.673604 |  |
| Na                                                    | 4.769903  | -0.352065 | 0.001093  |  |
| Na                                                    | -0.290169 | 3.637125  | -0.010148 |  |
| Na                                                    | -2.823095 | -0.565076 | -1.935132 |  |
| Na                                                    | -2.815274 | -0.549277 | 1.943168  |  |
| Al                                                    | -0.863198 | 0.723637  | -0.004620 |  |
| Al                                                    | -0.840131 | -1.789257 | 0.004687  |  |