Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting information

Figure S1. The XRD pattern of pristine ZIF-67.

Figure S2. The N₂ adsorption-desorption isotherms and pore size distribution of ZIF-67.

Figure S3. FT-IR spectra of carbonized ZIF-67 catalysts.

Figure S4. Element mapping and SEM-EDX analysis of ZIF-67-500 catalyst.

		C Kα1_2		
Co Lư1,2	Ο Κα1	1μm Element	Weightpercent	Atom ratio
		С	47.2	74.3
		0	10.1	13.7
		Co	42.6	12.0
	1μm			

Figure S5. Element mapping and SEM-EDX analysis of ZIF-67-600 catalyst.

Figure S6. Element mapping and SEM-EDX analysis of ZIF-67-700 catalyst.

Figure S7. Element mapping and SEM-EDX analysis of ZIF-67-800 catalyst.

Figure S8. Element mapping and SEM-EDX analysis of ZIF-67-900 catalyst.

Figure S9. Picture comparison of carbonized ZIF-67 and ZIF-67 after ozone decomposition under high humidity (RH=90%).

Figure S10. The XRD patterns of fresh and spent ZIF-67-800 catalysts.

Figure S11. The SEM picture of ZIF-8-800.

Figure S12. The N₂ adsorption-desorption isotherms and pore size distribution of ZIF-8-800 catalysts.

Figure S13. The XPS of N1s on the ZIF-8-800 catalysts.

Figure S14. Pictures of water contact angle on ZIF-67-800 and ZIF-67 surface.

Figure S15. The reproducibility test of ZIF-67-800 catalyst.

Table SI. AND	analysis of cou	all species on car	Domzed ZIF-0/	catarysis.

. .

C C

1.14

Catalysts	Structure	phase	Crystallite size (nm)
ZIF-67-500	cubic	metallic Co	15.2
ZIF-67-600	cubic	metallic Co	15.9
ZIF-67-700	cubic	metallic Co	17.5
ZIF-67-800	cubic	metallic Co	25.3
ZIF-67-900	cubic	metallic Co	38.6

Catalysts	O ₃ (ppm)	T (°C)	RH (%)	Reaction time (h)	O ₃ conversion (%)	Ref.
ZIE-67-800	23	20	20 00 6	6	100	This
211-07-000	25	20	90	0		work
7IE 67 800	23	20	20 90	36	95%	This
211 07 000	25	20				work
MnOMn ₂ N _{0.86} @850	23	20	90	6	6	1
CeMn ₁₀ O _x	40	30	65	6	96	2
MIL-100(Fe)	45	25	90	12	100	3
Cu ₂ O/rGO	20	25	80	10	98	4
Ag-MnOx-H	40	25	60	6	90	5
OMS-2-Ac	40	30	90	6	80	6
Ce-OMS-2	40	25	90	6	90	7
8%AgMnO _x	40	30	65	6	81	8
V-MnO ₂	110	25	55	5	50	9
Ni/NiO pH-1	1000	25	90	8	98	10
S-300 (MnOx)	43	25	25	6	80	11
S-300 (MnOx)	43	25	50	6	65	11
S-300 (MnOx)	43	25	75	6	10	11
1.1% MnOx/AC	43-48	25	60	6	83	12

Table S2. The stability comparison of ZIF-67-800 with reported works.

Reference

1. C. Fang, C. Hu, D. Li, J. Chen and M. Luo, New J. Chem., 2020, 44, 17993-17999.

2. J. Ma, X. Lia, C. Zhang, Q. Ma and H. He, *Appl. Catal. B Environ.*, 2020, **264**, 118498. DOI: 10.1016/j.apcatb.2019.118498.

3. H. Wang, P. Rassu, X. Wang, H. Li, X. Wang, X. Wang, X. Feng, A. Yin, P. Li, X. Jin, S. Chen, X. Ma and B. Wang, *Angew. Chem. Int. Ed. Engl.*, 2018, **50**, 16416-16420.

4. S. Gong, J. Chen, X. Wu, N. Han and Y. Chen, Catal. Commun., 2018, 106, 25-29.

5. H. Deng, S. Kang, J. Ma, L. Wang, C. Zhang and H. He, *Environ. Sci. Technol.*, 2019, **53**, 10871-10879.

6. C. Wang, J. Ma, F. Liu, H. He and R. Zhang, J. Phys. Chem. C., 2015, 119, 23119-23126.

7. L. Yang, J. Ma, X. Li, C. Zhang and H. He, Ind. Eng. Chem. Res., 2020, 59, 118-128.

8. X. Li, J. Ma, C. Zhang, R. Zhang and H. He, J. Environ. Sci., 2019, 80, 159-168.

9. Y. Yang, P. Zhang and J. Jia, Appl. Surf. Sci., 2019, 484, 45-53.

10. S. Gong, A. Wang, Y. Wang, H. Liu, N. Han and Y. Chen, *ACS Appl. Nano Mater.*,2020, **3**,597-607.

11. Y. Liu, P. Zhang, J. Zhan and L. Liu, Appl. Surf. Sci., 2019, 463, 374-385.

12. M. Wang, P. Zhang, J. Li and C. Jiang, Chin. J. Catal., 2014, 35, 335-341.