Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supporting Information

Polyacrylamide hydrogel derived three-dimensional hierarchical porous N, S co-

doped carbon framework for electrochemical capacitors

Xiaotang Meng,[†] Jinyang Zhang,[†] Qiuli Chen, Linrui Hou, Changzhou Yuan*

School of Material Science & Engineering, University of Jinan, Jinan, 250022, P. R.

China

*E-mail: mse_yuancz@ujn.edu.cn; ayuancz@163.com

Fig. S1 Digital images of the PAAG hydrogel (a) without and (b) with the soaked CH_4N_2S .

			HNC-F	HNSC-F
elemental	С		~88.5	~85.5
percentages (at. %)		C- I	21.4	22.9
		С- П	13.6	53.5
		C-Ⅲ	6.6	5.62
		C- IV	4.6	3.5
	Ο		~6.7	HNC-FHNSC-F ~ 88.5 ~ 85.5 21.4 22.9 13.6 53.5 6.6 5.62 4.6 3.5 ~ 6.7 ~ 8.4 2.1 1.9 2.9 3.1 1.7 3.4 ~ 4.9 ~ 5.3 1.1 1.7 1.2 1.3 2.2 2.3 0.4 0.5 ~ 0 ~ 0.8 $ 0.2$
		0- I	2.1	
		О - I	2.9	3.1
		O-Ⅲ	1.7	3.4
	Ν		~4.9	~5.3
		N- I	1.1	1.7
		N- Ⅱ	1.2	1.3
		N-Ⅲ	2.2	2.3
		N- IV	0.4	0.5
	S		~0	~0.8
		S- I	-	0.2
		S- I	-	0.2

Table S1 XPS relative contents of C, O, N and S species in the HNC-F and HNSC-F.

S-III	-	0.2
S-IV	-	0.05
S-V	-	0.1

Table S2 EIS fitting parameters of the HNC-F and HNSC-F electrodes.

Parameters	HNC-F	HNSC-F		
R	0.45	0.12		
R _{ct}	4.4	2.2		
С	0.0044	1.20		
Z_1	0.083	1.13		
Z_2	0.04	0.02		
Q	0.35	0.074		

Table S3 Comparison in electrochemical properties of the HNSC-F electrode in three-electrode system with other heteroatom-doped carbon electrodes reported in literatures

Materials	Doped element	Electrolyte	SC (F g ⁻ ¹)	VSC (F cm ⁻ ³)	Current density (A g ⁻¹)	Ref.
HNSC-F	NG	6 M KOH	254.4	256.9	0.5	This
	IN, S	$1 \text{ M H}_2 \text{SO}_4$	325.8	329.1		work
S-PGHS-900	S	0.1 M KOH	240	-	0.5	1
MCF	Ν	6 M KOH	247.8	171.8	0.5	2
		$1 \text{ M H}_2\text{SO}_4$	307.4	212.1	0.3	2
N/P-TR GO	N, P	6 M KOH	165	-	0.5	3

BNC-20	B, N	6 M KOH	188	-	0.1	4
BHAC-850	B, N	6 M KOH	175	-	0.5	5
MBCP	N, S	6 M KOH	221	-	0.5	6
Asn-5-NaHCO ₃	N, S	$1 \text{ M H}_2 \text{SO}_4$	220	-	0.5	7
C-700-1.5	Ν	$1 \text{ M H}_2 \text{SO}_4$	280	-	0.2	8
PM-600-1.0	Ν	$1 \text{ M H}_2 \text{SO}_4$	278	-	0.1	9
NHG	Ν	$2 \text{ M H}_2 \text{SO}_4$	295	-	0.5	10

References

- X. Chen, X. Chen, X. Xu, Z. Yang, Z. Liu, L. Zhang, X. Xu, Y. Chen and S. Huang, *Nanoscale*, 2014, 6, 13740-13747.
- L. Hou, Z. Chen, Z. Zhao, X. Sun, J. Zhang and C. Yuan, ACS Appl. Energy Mater., 2018, 2, 548-557.
- C. Wang, Y. Zhou, L. Sun, Q. Zhao, X. Zhang, P. Wan and J. Qiu, *J. Phys. Chem. C*, 2013, **117**, 14912-14919.
- 4 L. Luo, Y. Zhou, W. Yan, X. Wu, S. Wang and W. Zhao, *Electrochim. Acta*, 2020, 360, 137010.
- 5 Q. Lu, Y.-y. Xu, S.-j. Mu and W.-c. Li, New Carbon Mater., 2017, 32, 442-450.
- 6 P.-G. Ren, W. He, Z. Dai, X. Hou, F. Ren and Y.-L. Jin, *Diamond Relat. Mater.*, 2020, 109, 108028.
- 7 H. Zhou, Y. Zhou, S. Wu, L. Li, Y. Li, M. Guo, Z. Qi and C. Feng, J. Alloys

Compd., 2020, 829, 154549.

- J. Jiang, L. Bao, Y. Qiang, Y. Xiong, J. Chen, S. Guan and J. Chen, *Electrochim. Acta*, 2015, 158, 229-236.
- 9 J. Jiang, H. Chen, Z. Wang, L. Bao, Y. Qiang, S. Guan and J. Chen, J. Colloid Interface Sci., 2015, 452, 54-61.
- 10 Z.-j. Jiang, Z. Jiang and W. Chen, J. Power Sources, 2014, 251, 55-65.