Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Determination of thallium(III) ions by oxidative hydrolysis of rhodamine-hydroxamate

Jae Hoon Yoo, Yu Jeong Lee, Kang Min Lee, Myung Gil Choi, Tae Jung Park,* and Suk-Kyu Chang*

Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea

Contents

Experimental details.

Table S1.	Summarization of reported Tl ³⁺ -selective determination methods				
Fig. S1.	Time plot of fluorescence Tl^{3+} signaling by probes (a) 1 and (b) 2 monitored at				
	551 nm (for probe 1) and 583 nm (for probe 2).				
Fig. S2.	Pseudo-first-order kinetic plot of the reaction of probes (a) 1 and (b) 2 with				
	Tl ³⁺ .				
Fig. S3.	Fluorescence spectra of (a) 1 and (b) 2 in the presence and absence of Tl^{3+} ions.				
Fig. S4.	Fluorescence spectra of 1 and 3 in the presence and absence of Tl^{3+} ions.				
Fig. S5 .	Effect of pH on the fluorescence signaling of Tl^{3+} by compound 3 .				
Fig. S6.	Effect of pH on the fluorescence signaling of Tl^{3+} by probe 1.				
Fig. S7.	Changes in fluorescence enhancement (I/I_0) of probe 1 at 551 nm in the				
	presence of Tl^{3+} ions or common anions. Inset: fluorescence spectra of 1 in				
	the presence of anions.				
Fig. S8 .	Picture of TLC plate showing the migration of probe 1, 1 in the presence of				
	Tl^{3+} , and reference 4 .				
Fig. S9 .	Mass spectrum of Tl^{3+} signaling product of 1 .				
Fig. S10.	Changes in fluorescence enhancement (I/I_0) of probe 1 at 551 nm in the				
	presence of Tl^{3+} or common oxidants. Inset: fluorescence spectra of 1 in the				
	presence of oxidants.				

- Fig. S11.Time plot of the fluorescence intensity change of IBX signaling by probe 1 at
551 nm.
- Fig. S12.Effect of solvents on the fluorescence signaling of probe 1 in the presence of
Tl³⁺ and HOCl.
- Fig. S13. Changes in fluorescence intensity ratio $(I_{Anion+Tl(III)}/I_{Tl(III)})$ of Tl³⁺ signaling by probe 1 at 551 nm under the competitive conditions of the presence of common anions.
- Fig. S14. Tl^{3+} signaling behavior of probe 1 as a function of $Tl(NO_3)_3$ and $Tl(OAc)_3$ concentration.
- **Fig. S15**. Tl³⁺ concentration-dependent fluorescence changes of probe 1 at 551 nm.
- Fig. S16. Changes in absorbance enhancement (A/A_0) of probe 1 at 527 nm in the presence of common oxidants.
- **Fig. S17**. Changes in absorbance enhancement (A/A_0) of probe 1 at 527 nm in the presence of common anions.
- **Fig. S18**. Changes in absorbance enhancement (A/A_0) of Tl³⁺ signaling by probe 1 at 527 nm under the competitive conditions of the presence of common metal ions.
- **Fig. S19**. Changes in absorbance enhancement (A/A_0) of Tl³⁺ signaling by probe 1 at 527 nm under the competitive conditions of the presence of common anions.
- **Fig. S20**. Changes in the fluorescence intensity at 551 nm of probe 1 as a function of concentration of thallium ions in a synthetic urine.
- **Fig. S21.** ¹H NMR spectrum of **1** in $CDCl_3$.
- Fig. S22. 13 C NMR spectrum of 1 in CDCl₃.
- Fig. S23. EI (direct insertion probe) mass spectrum of 1.
- Fig. S24. ¹H NMR spectrum of 2 in CDCl₃.
- Fig. S25. ${}^{13}C$ NMR spectrum of 2 in CDCl₃.
- Fig. S26. EI (direct insertion probe) mass spectrum of 2.
- Fig. S27. ¹H NMR spectrum of $\mathbf{3}$ in CDCl₃.
- Fig. S28. 13 C NMR spectrum of 3 in CDCl₃.
- Fig. S29. High resolution ESI mass spectrum of 3.

Experimental details.

Preparation of Probes 1 and 2

Distilled water (20 mL) containing a solution of hydroxylamine hydrochloride (1.40 g, 20 mmol) and sodium hydroxide (0.80 g, 20 mmol) was added to an ethanol solution (20 mL) of rhodamine 6G (0.96 g, 2.0 mmol) or rhodamine B base (0.88 g, 2.0 mmol). After 2 hours of stirring at 25 °C, 200 mL of water was added. Dichloromethane was used to extract the product while anhydrous magnesium sulfate was used to dry the organic phase. A column chromatography made up of silica gel was used for the purification of the crude product (eluant: ethyl acetate).

Probe 1.^{S1} Light pink solid, 0.66 g, 77%. ¹H NMR (600 MHz, chloroform-*d*) δ 7.85 – 7.81 (m, 1H), 7.46 – 7.39 (m, 2H), 7.26 (s, 1H), 7.06 – 7.01 (m, 1H), 6.40 (s, 2H), 6.36 (s, 2H), 3.22 (q, *J* = 7.2 Hz, 4H), 1.91 (s, 6H), 1.32 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 163.52, 152.14, 150.82, 147.55, 132.63, 128.49, 128.08, 127.72, 123.60, 122.80, 117.75, 104.69, 96.99, 65.85, 38.36, 16.76, 14.77; MS (EI); *m*/*z* calculated for C₂₆H₂₇N₃O₃ [M]⁺: 429.2, found 429.0.

Probe **2**.^{S2} Light pink solid, 0.68 g, 75%. ¹H NMR (600 MHz, chloroform-*d*) δ 7.83 (d, *J* = 7.4 Hz, 1H), 7.42 (dt, *J* = 20.0, 7.3 Hz, 2H), 7.08 (d, *J* = 7.4 Hz, 1H), 6.52 (d, *J* = 8.8 Hz, 2H), 6.43 (d, *J* = 2.6 Hz, 2H), 6.29 (dd, *J* = 8.8, 2.6 Hz, 2H), 3.34 (q, *J* = 7.1 Hz, 8H), 1.17 (t, *J* = 7.0 Hz, 12H); ¹³C (150 MHz, CDCl₃) δ 163.56, 153.76, 150.63, 148.94, 132.59, 128.71, 128.12, 128.03, 123.65, 122.86, 107.93, 104.22, 98.11, 65.82, 44.36, 12.62; MS (EI); *m/z* calculated for C₂₈H₃₂N₃O₃ [M+H]⁺: 458.2, found 458.2.

Compound	Signal	Conditions	LOD ^[a]	Mechanism	Applications	Ref.
	Colorimetry	pH 7.0 solution containing 0.1% CHCl ₃	-	Formation of hydroxamic acid-Tl ³⁺ complex	Tl ³⁺ detection in standard samples	[S3]
	Colorimetry	pH 1.0 Glycine- HCl buffer	$1.2 \times 10^{-9} \mathrm{M}$ (preconcentration)	Extraction of Tl ³⁺ by 2,6-bis(<i>N</i> -phenyl carbamoyl) pyridine	Tl ³⁺ detection in drinking water, river water, and human serum	[S4]
	Colorimetry	H ₂ PO ₄ medium	$7.2 \times 10^{-5} \mathrm{M}$	Oxidative coupling reaction of MBTH with IDH	Tl ³⁺ detection in practical water samples and urine	[85]
CF3 (CH2)3-N-2HCI	Colorimetry	H ₂ PO ₄ medium	$2.6 \times 10^{-5} \mathrm{M}$	Oxidation of trifluoperazine-HCl	Tl ³⁺ detection in alloys, minerals, and urine.	[S6]
$ \underbrace{ \begin{array}{c} AsO_{3H_{2}}\\ N=N-\\ S-\\ S\\ S\\ S \end{array} }^{Cl} \mathbf{Cl} $	Fluorescence	Acetone containing 10% (v/v) HCl	$1.3 \times 10^{-12} \text{ M}$ (preconcentration)	Oxidation of arsenoxylphenylazo rhodanine	Tl ³⁺ detection in wine, water and mineral samples	[S7]
$\underset{Et_2N}{\overset{O_0,S}{\overset{O_1}{\underset{H}{\overset{O_1}{\underset{H}{\underset{H}{\overset{O_2}{\underset{H}{\atopH}{\underset{H}{\atop\atopH}}{\underset{H}{\underset{H}{\atopH}}{\underset{H}{\underset{H}}}{\underset{H}}{\underset{H}}{\underset{H}}{\underset{H}}}{\underset{H}}{\underset{H}}{\underset{H}}}{\underset{H}}{\underset{H}}{\underset{H}}{\underset{H}}{\underset{H}}{\underset{H}}{\underset{H}}}{\underset{H}}{\underset{H}}}{\underset{H}}{\underset{H}}{\underset{H}}}{\underset{H}}{\underset{H}}}{\underset{H}}}{\underset{H}}{\underset{H}}{\underset{H}}}{\underset{H}}}{\underset{H}}{\underset{H}}}{\underset{H}}{\underset{H}}}{\underset{H}}}{\underset{H}}}{\underset{H}}}}}}}}$	Colorimetry & Fluorescence	Acetate buffer (pH 4.76) with 20% (v/v) DMSO	1.9 × 10 ⁻⁷ M	Oxidative hydrolysis to rhodamine b base	Scanner-based Tl ³⁺ determination of commercial reagent	[S8]

Table S1.	Summarization o	f reported Tl ³⁺ -se	elective determina	tion methods	
		10 million			

		Acetate buffer			Determination of	
N OH	Colorimetry &	(pH 4.2)	$2.9 \times 10^{-7} \mathrm{M}$	Oxidative hydrolysis	urinary Tl ³⁺ ion using	This
~NCOCCN^	Fluorescence	comprising 30%		to rhodamine 6G	a smartphone-based	work
нн		(v/v) DMSO			method	

[a] Limit of detection.

References.

- [S1] Y. K. Yang, H. J. Cho, J. Lee, I. Shin and J. Tae, Org. Lett., 2009, 11, 859–861.
- [S2] T. Sun, J. O. Moon, M. G. Choi, Y. Cho, S. W. Ham and S.-K. Chang, Sens. Actuator B-Chem., 2013, 182, 755–760.
- [S3] Y. K. Agrawal and V. J. Bhatt, *Analyst*, 1986, **111**, 761–765.
- [S4] B. Rezaei, S. Meghdadi and N. Majidi, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2007, 67, 92–97.
- [S5] P. Nagaraja, N. G. S. Al-Tayar, A. Shivakumar, A. K. Shresta and A. K. Gowda, J. Mex. Chem. Soc., 2009, 53, 201–208.
- [S6] H. D. Revanasiddappa and T. N. K. Kumar, *Anal. Sci.*, 2002, **18**, 1131–1135.
- [S7] S. Ge, P. Dai, J. Yu, Y. Zhu, J. Huang, C. Zhang, L. Ge and F. Wan, Intern. J. Environ. Anal. Chem., 2010, 90, 1139–1147.
- [S8] Y. J. Lee, M. G. Choi, J. H. Yoo, T. J. Park, S. Ahn and S.-K. Chang, J. Photochem. Photobiol. A-Chem., 2020, 394, 112471.

(a)

Fig. S1. Time plot of fluorescence Tl^{3+} signaling by probes (a) **1** and (b) **2** monitored at 551 nm (for probe **1**) and 583 nm (for probe **2**). [**1**] = [**2**] = 5.0×10^{-6} M, [Tl^{3+}] = 1.5×10^{-3} M in acetate buffer solution (pH 4.2, 10 mM) containing 30% (ν/ν) DMSO. $\lambda_{ex} = 527$ nm.

(a)

(b)

Fig. S2. *Pseudo*-first-order kinetic plot of the reaction of probes (a) **1** and (b) **2** with Tl³⁺. [**1**] = $[\mathbf{2}] = 5.0 \times 10^{-6}$ M, $[\text{Tl}^{3+}] = 1.5 \times 10^{-3}$ M in a solution of acetate buffer (pH 4.2, 10 mM) comprising 30% (*v*/*v*) DMSO. $\lambda_{\text{ex}} = 527$ nm.

(b)

Fig. S3. Fluorescence spectra of (a) **1** and (b) **2** in the presence and absence of TI^{3+} ions. [**1**] = $[\mathbf{2}] = 5.0 \times 10^{-6} \text{ M}, [TI^{3+}] = 1.5 \times 10^{-3} \text{ M}$ in acetate buffer solution (pH 4.2, 10 mM) containing 30% (v/v) DMSO. $\lambda_{ex} = 527$ nm for probe **1** and 559 nm for probe **2**.

Fig. S4. Fluorescence spectra of **1** and **3** in the presence and absence of Tl^{3+} ions. [**1**] = [**3**] = 5.0×10^{-6} M, $[Tl^{3+}] = 1.5 \times 10^{-3}$ M in acetate buffer solution (pH 4.2, 10 mM) containing 30% (v/v) DMSO. $\lambda_{ex} = 527$ nm.

Fig. S5. Effect of pH on the fluorescence signaling of Tl³⁺ by compound **3**. [**3**] = 5.0×10^{-6} M, [Tl³⁺] = 1.5×10^{-3} M in acetate buffer solution (pH 4.2, 10 mM) containing 30% (v/v) DMSO. pH of measuring solutions was adjusted using 0.1 N HCl and NaOH solutions. $\lambda_{ex} = 527$ nm.

Fig. S6. Effect of pH on the fluorescence signaling of Tl³⁺ by probe **1**. Data for the alkaline (pH > 7.0) conditions were not obtained as described in the main text. [**1**] = 5.0×10^{-6} M, [Tl³⁺] = 1.5×10^{-3} M in acetate buffer solution (pH 4.2, 10 mM) containing 30% (*v/v*) DMSO. pH of measuring solutions was adjusted using 0.1 N HCl and NaOH solutions. $\lambda_{ex} = 527$ nm.

Fig. S7. Changes in fluorescence enhancement (I/I_0) of probe 1 at 551 nm in the presence of Tl^{3+} ions or common anions. Inset: fluorescence spectra of 1 in the presence of anions. [1] = 5.0×10^{-6} M, $[Tl^{3+}] = [A^{n-}] = 1.5 \times 10^{-3}$ M in acetate buffer solution (pH 4.2, 10 mM) containing 30% (v/v) DMSO. $\lambda_{ex} = 527$ nm.

Fig. S8. Picture of TLC plate showing the migration of probe **1**, **1** in the presence of Tl^{3+} , and reference **4**. Silica gel TLC plate under illumination with 254 nm (left) and 365 nm (right) of light, eluent: CH₂Cl₂:CH₃OH = 9:1 (ν/ν).

Fig. S9. Mass spectrum of Tl³⁺ signaling product of 1.

Fig. S10. Changes in fluorescence enhancement (I/I_0) of probe 1 at 551 nm in the presence of Tl³⁺ or common oxidants. Inset: fluorescence spectra of 1 in the presence of oxidants. [1] = 5.0×10^{-6} M, [Tl³⁺] = [oxidant] = 1.5×10^{-3} M in acetate buffer solution (pH 4.2, 10 mM) containing 30% (v/v) DMSO. $\lambda_{ex} = 527$ nm.

Fig. S11. Time plot of the fluorescence intensity change of IBX signaling by probe 1 at 551 nm. [1] = 5.0×10^{-6} M, [IBX] = 1.5×10^{-3} M in acetate buffer solution (pH 4.2, 10 mM) containing 30% (ν/ν) DMSO. $\lambda_{ex} = 527$ nm.

Fig. S12. Effect of solvents on the fluorescence signaling of probe 1 in the presence of Tl^{3+} and HOCl. [1] = 5.0×10^{-6} M, [Tl³⁺] = 1.5×10^{-3} M, [HOCl] = 5.0×10^{-5} M in a solution of acetate buffer (pH 4.2, 10 mM) comprising 30% (*v*/*v*) acetonitrile, THF or DMSO. $\lambda_{ex} = 527$ nm.

Fig. S13. Changes in fluorescence intensity ratio $(I_{Anion+Tl(III)}/I_{Tl(III)})$ of Tl³⁺ signaling by probe 1 at 551 nm under the competitive conditions of the presence of common anions. [1] = 5.0 × 10⁻⁶ M, [Tl³⁺] = [A^{n–}] = 1.5 × 10⁻³ M in acetate buffer solution (pH 4.2, 10 mM) containing 30% (*v/v*) DMSO. $\lambda_{ex} = 527$ nm.

Fig. S14. Tl^{3+} signaling behavior of probe **1** as a function of $Tl(NO_3)_3$ and $Tl(OAc)_3$ concentration. [**1**] = 5.0×10^{-6} M, [$Tl(NO_3)_3$] = [$Tl(OAc)_3$] = $0 - 2.0 \times 10^{-5}$ M in a solution of acetate buffer (pH 4.2, 10 mM) containing 30% (ν/ν) DMSO. $\lambda_{ex} = 527$ nm.

Fig. S15. Tl³⁺ concentration-dependent fluorescence changes of probe 1 at 551 nm. [1] = 5.0 $\times 10^{-6}$ M, [Tl³⁺] = 0 - 2.0 $\times 10^{-5}$ M in acetate buffer solution (pH 4.2, 10 mM) containing 30% (ν/ν) DMSO. $\lambda_{ex} = 527$ nm.

Fig. S16. Changes in absorbance enhancement (A/A_0) of probe 1 at 527 nm in the presence of common oxidants. Inset: absorption spectra of 1 in the presence of oxidants. [1] = 5.0×10^{-6} M, [oxidant] = 1.5×10^{-3} M in acetate buffer solution (pH 4.2, 10 mM) containing 30% (v/v) DMSO.

Fig. S17. Changes in absorbance enhancement (A/A_0) of probe 1 at 527 nm in the presence of common anions. Inset: absorption spectra of 1 in the presence of anions. [1] = 5.0×10^{-6} M, $[A^{n-}] = 1.5 \times 10^{-3}$ M in acetate buffer solution (pH 4.2, 10 mM) containing 30% (*v/v*) DMSO.

Fig. S18. Changes in absorbance enhancement (A/A_0) of Tl³⁺ signaling by probe 1 at 527 nm under the competitive conditions of the presence of common metal ions. [1] = 5.0×10^{-6} M, $[Tl^{3+}] = [M^{n+}] = 1.5 \times 10^{-3}$ M in acetate buffer solution (pH 4.2, 10 mM) containing 30% (v/v) DMSO.

Fig. S19. Changes in absorbance enhancement (A/A_0) of Tl³⁺ signaling by probe 1 at 527 nm under the competitive conditions of the presence of common anions. [1] = 5.0×10^{-6} M, [Tl³⁺] = $[A^{n-}] = 1.5 \times 10^{-3}$ M in acetate buffer solution (pH 4.2, 10 mM) containing 30% (v/v) DMSO.

Fig. S20. Changes in the fluorescence intensity at 551 nm of probe **1** as a function of concentration of thallium ions in a synthetic urine. $[1] = 5.0 \times 10^{-6} \text{ M}$, $[\text{Tl}^{3+}] = 0 - 10 \,\mu\text{M}$ in acetate buffer solution (pH 4.2, 10 mM) consisting 30% (*v*/*v*) DMSO. $\lambda_{\text{ex}} = 527 \,\text{nm}$.

Fig. S21. ¹H NMR spectrum of 1 in CDCl₃.

Fig. S22. ¹³C NMR spectrum of 1 in CDCl₃.

Fig. S23. EI (direct insertion probe) mass spectrum of 1.

Fig. S24. ¹H NMR spectrum of 2 in CDCl₃.

Fig. S25. ¹³C NMR spectrum of 2 in CDCl₃.

Fig. S26. EI (direct insertion probe) mass spectrum of 2.

Fig. S27. ¹H NMR spectrum of 3 in CDCl₃.

Fig. S28. ¹³C NMR spectrum of 3 in CDCl₃.

Fig. S29. High resolution ESI mass spectrum of 3.