Supporting information

Controllable Synthesis of Hollow Pumpkin-like CuO/Cu₂O Composites for Ultrasensitive Non-enzymatic Glucose and Hydrogen Peroxide Biosensors

Xiaoqing Ma^{a,b}, Kang-lai Tang^b, Mingyu Yang^b, Wenbing Shi^a, Wenxi Zhao^{c*}

^aSchool of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing,408100, China
^bSports Medicine Center, Department of Orthopedic Surgery, Southwest Hospital, The 3rd Military Medical University, Chongqing, 400038, China
^cSchool of Electronic Information Engineering, Yangtze Normal University, Chongqing,408100, China

*Corresponding author: Wenxi Zhao, E-mail: zwx.168@163.com

Fig. S1. Materials characterization. SEM images of pumpkin-like CuO/Cu_2O composites obtained at 150 °C for (a) 9, (b) 12, (c) 18, (d) 24, (e) 30 and (f) 36 h.

Fig. S2. Amperometric responses of modified electrode with the addition of stimulated agents in PBS solution with and without cells.

Table S1. Effect of reaction times on the phase composition of the CuO/Cu_2O composites.

Samples	9h	12h	18h	24h	30h	36h
W _{CuO} (%)	100	89.8	83.0	69.6	43.0	33.2
W _{Cu2O} (%)	0	7.2	17.0	30.4	57.0	66.8

Materials	Electrolyte	Sensitivity	Detection	Linear range	Reference
		(µA mM ⁻¹ cm ⁻²)	limit (µM)	(mM)	
Cu _x O/Cu	0.1M K	1620	49	Up to 6	[1]
CuO/Cu ₂ O NFs	0.1M NaOH	830	0.7	Up to 10	[2]
Cu/Cu ₂ O/CuO HSs	0.1M NaOH	8726	0.39	0.0005 -30	[3]
CuO/Cu ₂ O@CuO/Cu ₂ O core-shell NWAs	0.1M NaOH	10090	0.48	0.00099-1.33	[4]
CuO/rGO/Cu ₂ O/Cu	0.1M NaOH	3401	0.1	0.0005-8.266	[5]
Cu _x O nanosheets/Cu	0.1M NaOH	1541	0.57	Up to 4	[6]
CuO/Cu ₂ O nanowires	0.075M NaOH	1281	16.7	0.05-2.0	[7]
Cu _x O/PPy/Au	0.1M NaOH	232	6.2	Up to 8	[8]
Cu/Cu _x O/NC	0.1M NaOH	_	3.5	0-2.0; 2.0-5.0	[9]
Cu _x O/Cu	0.5M NaOH	4848	_	0.01-0.2;0.5-1.6	[10]
CuO/ Cu ₂ O composite	0.1M NaOH	880	0.108	Up to 15	This work

Table S2. Performance comparison of reported glucose sensors based on the composition of CuO and Cu₂O.

Table S3. Comparison of various sensors based on CuO and Cu ₂ O for H ₂ O ₂ detection.

Materials	Electrolyte	Sensitivity	Detection limit	Linear range	Reference
		(µA mM ⁻¹ cm ⁻²)	(µM)	(mM)	
CuO/rGO/Cu ₂ O/Cu	0.1M PBS	3401.1	0.1	0.0005-8.266	[5]
CuO@Cu2O-NWs/PVA	PBS(PH=7)	39.5	0.35	0.001-10	[11]
Cu ₂ O/CuO@rGO	0.1M NaOH	431.65	0.71	0.0015-11	[12]
Cu _x O NPs@ZIF-8	0.1M NaOH	178	0.15	0.0015-21.4	[13]
Cu _x ONPs/GF	PBS(pH=7.15)	3437.5	0.023	0.07-133	[14]
CuO/ Cu ₂ O composite	0.01M PBS	5154	0.018	0.005-1.05	This work

References

[1] C. L. Li, Y. Su, S. W. Zhang, X. Y. Lv, H. L. Xia, and Y. J. Wang, Biosensors and bioelectronics, 2010, 26, 903-907,.

[2] N. Lu, C. L. Shao, X. H. Li, T. Shen, M. Y. Zhang, F. J. Miao, P. Zhang, X. Zhang, K. X. Wang, Y. Zhang, and Y. C. Liu, Rsc Advances, 2014, 4, 31056-1061.

[3] L. Y. Lin, B. B. Karakocak, S. Kavadiya, T. Soundappan, P. Biswas, Sensors and Actuators. 2018,259,745-752

[4] C. P. Yu, J. W. Cui, Y. Wang, H. M. Zheng, J. F. Zhang, X. Shu, J. Q. Liu, Y. Zhang, and Y. C. Wu, Applied Surface Science, 2018, 439, 11-17,

[5] C. J. Zhao, X. Wu, P. W. Li, C. H. Zhao, X. Z. Qian, Microchimica Acta, 2017, 184, 2341-2348.

[6] J. Lv, C. C. Kong, Y. Xu, Z. M.Yang, X. J. Zhang, S. C. Yang, G. Meng, J. L. Bi, J. H. Li, and S. Yang, Sensors & Actuators B Chemical, 2017, 248, 630-638.

[7] Q. Q. Zhou, M. P. Zhuo, R. Chen, S. Z. Wang, Z. S. Wang, M. Zheng, and L. S. Liao, Journal of Materials Chemistry C, 2019, 7, 14874-14880.

[8] F. H. Meng, W. Shi, Y. N. Sun, X. Zhu, G. S. Wu, C. Q. Ruan, X. Liu, and D. T. Ge. Biosensors & Bioelectronics, 2013, 42,141-147.

[9] L. H. Ding, F. Yan, Y. H. Zhang, L. Liu, X. Yu, and H. Liu, ACS Applied Nano Materials, 2020, 3, 617-623.

[10] S. C. Wang, L. Jiang, J. Hu, Q. S. Wang, S. H. Zhan, and Y. F. Lu, Journal of Alloys and Compounds, 2019, 815,152105.

[11] F. Emanuela, C. Daniela, G. Maria, C. Malitesta, A. Tepore. Talanta, 2016, 147, 124-131.

[12] D. M. Wu, Z. D. Xu, T. Zhang, Y. B. Shao, P. X. Xi, H. Li and C. L. Xu. Rsc Advances, 2016, 6, 103116-103123.

[13] J. Yang, H. L. Ye, F. Q. Zhao, B. Z. Zeng, Acs Applied Materials & Interfaces, 2016, 8, 20407-20414.

[14] J. F. Zeng, X. T. Ding, L. W. Chen, L. Jiao, Y. Z. Wang, D. W. Christopher, Q, Han, and L, T. Qu. RSC Advances, 2019, 9, 28207-28212.