
A Novel pH-responsive Fe-MOF System for Enhanced Cancer Treatment Mediated by Fenton Reaction

Senlin Wang^{†a}, Hongshuai Wu^{†a}, Kai Sun^a, Jinzhong Hu^a, Fanghui Chen^a, Wen Liu^a, Jian Chen^a, Baiwang Sun^{a,*} and Abul Monsur Showkot Hossain^{b,*}

- ^a School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China. E-mail address: chmsunbw@seu.edu.cn
- ^b School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China. E-mail address: monsur 12@yahoo.com
- ‡ These authors have contributed equally to the work.

Fig. S1. ROS intensity of A549 cells induced by DOX@Fe-MOF and DOX@Fe-MOF@PEM achieved by CLSM. Scale bar: 20 μm.

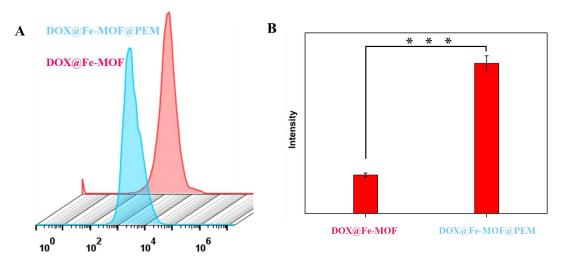


Fig. S2. (A) The DOX uptake profile of the A549 cells cultured with DOX@Fe-MOF and DOX@Fe-MOF@PEM by flow cytometry; (B) the analysis of flow cytometry data. n=3, mean \pm SD; ***, p<0.001.