Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

$NaKB_6O_9F_2$: a new complex alkali metal fluorooxoborate with

$^{2}_{\infty}[B_{6}O_{9}F_{2}]^{2-}$ puckered layers

Zilong Chen, a Junwei Feng, b Bin a Dai, Feng Yu, a*

a Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan,

School of Chemistry and Chemical Engineering, Shihezi University. Shihezi 832003, P. R. China.

b Department of Physics, Changji University. Changji, Xinjiang 831100, China.

* Corresponding author: yufeng05@mail.ipc.ac.cn.

Table S1. Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å²×10³) and bond valence sums (BVS) for NaKB₆O₉F₂. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atoms	Wyck.	x/a	y/b	z/c	U(eq)	BVS
K(1)	e	-2959(1)	7019(1)	2073(1)	29(1)	0.93
Na(1)	e	1841(1)	6410(1)	8872(1)	21(1)	1.12
B(1)	e	408(3)	7988(2)	6029(3)	14(1)	3.09
B(2)	e	6590(3)	10906(2)	9157(3)	14(1)	3.07
B(3)	e	2594(4)	9599(2)	6516(3)	17(1)	3.07
B(4)	e	8178(4)	10643(2)	11778(3)	15(1)	3.03
B(5)	e	8651(4)	9118(2)	10371(3)	16(1)	3.07
B(6)	e	4790(3)	11136(2)	6530(3)	15(1)	3.06
O(1)	e	1270(2)	8677(1)	5582(2)	17(1)	2.16
O(2)	e	6997(2)	11346(1)	10422(2)	17(1)	2.03
O(3)	e	499(2)	8352(1)	7186(2)	18(1)	2.01
O(4)	e	2819(2)	9946(2)	7735(2)	19(1)	1.93
O(5)	e	3490(2)	10080(2)	6026(2)	24(1)	2.04
O(6)	e	-557(2)	6926(1)	5184(2)	20(1)	2.15
O(7)	e	5506(2)	11620(1)	7942(2)	15(1)	2.10
O(8)	e	7359(2)	9744(2)	9120(2)	21(1)	2.13
O(9)	e	9162(2)	9545(1)	11669(2)	19(1)	1.96
F(1)	e	3985(2)	12198(1)	5562(2)	30(1)	0.91
F(2)	e	6181(2)	10668(1)	6454(2)	25(1)	1.03

Table S2. Bond lengths [[Å]	and angles	[]] for NaKB ₆ O ₉ F ₂ .
--------------------------	-----	------------	-----	---

K(1)-F(1)#1	2.611(2)	O(6)-K(1)-O(4)#2	88.48(4)
K(1)-O(7)#2	2.722(2)	F(1)#1-K(1)-O(3)#4	73.11(6)
K(1)-F(2)#3	2.788(2)	O(7)#2-K(1)-O(3)#4	156.53(5)
K(1)-O(8)#3	2.8344(18)	F(2)#3-K(1)-O(3)#4	91.37(5)

K(1)-O(6)	2.902(2)	O(8)#3-K(1)-O(3)#4	107.16(5)
K(1)-O(4)#2	3.060(2)	O(6)-K(1)-O(3)#4	86.33(6)
K(1)-O(3)#4	3.153(2)	O(4)#2-K(1)-O(3)#4	96.74(4)
Na(1)-F(2)#6	2.2112(19)	F(2)#6-Na(1)-O(1)#7	139.58(7)
Na(1)-O(1)#7	2.3391(18)	F(2)#6-Na(1)-O(2)#8	97.21(7)
Na(1)-O(2)#8	2.425(2)	O(1)#7-Na(1)-O(2)#8	91.60(6)
Na(1)-O(9)#3	2.463(2)	F(2)#6-Na(1)-O(9)#3	96.79(8)
Na(1)-O(5)#7	2.506(2)	O(1)#7-Na(1)-O(9)#3	105.49(8)
Na(1)-O(3)	2.509(2)	O(2)#8-Na(1)-O(9)#3	133.22(6)
B(1)-O(3)	1.344(3)	F(2)#6-Na(1)-O(5)#7	83.81(7)
B(1)-O(6)	1.363(3)	O(1)#7-Na(1)-O(5)#7	56.21(6)
B(1)-O(1)	1.372(3)	O(2)#8-Na(1)-O(5)#7	109.61(8)
B(2)-O(7)	1.352(3)	O(9)#3-Na(1)-O(5)#7	116.15(8)
B(2)-O(2)	1.353(3)	F(2)#6-Na(1)-O(3)	101.96(6)
B(2)-O(8)	1.383(3)	O(1)#7-Na(1)-O(3)	115.63(6)
B(3)-O(5)	1.345(3)	O(2)#8-Na(1)-O(3)	56.80(7)
B(3)-O(4)	1.346(3)	O(9)#3-Na(1)-O(3)	76.67(7)
B(3)-O(1)	1.399(3)	O(5)#7-Na(1)-O(3)	165.54(7)
B(4)-O(2)	1.457(3)	O(3)-B(1)-O(6)	123.7(2)
B(4)-O(4)#8	1.466(3)	O(3)-B(1)-O(1)	122.3(2)
B(4)-O(9)	1.486(3)	O(6)-B(1)-O(1)	113.96(19)
B(4)-O(3)#8	1.489(3)	O(7)-B(2)-O(2)	120.72(19)
B(5)-O(9)	1.351(3)	O(7)-B(2)-O(8)	119.56(19)
B(5)-O(8)	1.367(3)	O(2)-B(2)-O(8)	119.6(2)
B(5)-O(6)#11	1.371(3)	O(5)-B(3)-O(4)	127.0(2)
B(6)-F(1)	1.401(3)	O(5)-B(3)-O(1)	112.90(19)
B(6)-F(2)	1.425(3)	O(4)-B(3)-O(1)	120.1(2)
B(6)-O(7)	1.437(3)	O(2)-B(4)-O(4)#8	111.79(19)
B(6)-O(5)	1.444(3)	O(2)-B(4)-O(9)	111.97(17)
F(1)#1-K(1)-O(7)#2	104.35(6)	O(4)#8-B(4)-O(9)	107.03(18)
F(1)#1-K(1)-F(2)#3	85.21(5)	O(2)-B(4)-O(3)#8	105.70(17)
O(7)#2-K(1)-F(2)#3	111.84(6)	O(4)#8-B(4)-O(3)#8	111.65(17)
F(1)#1-K(1)-O(8)#3	143.83(5)	O(9)-B(4)-O(3)#8	108.73(19)
O(7)#2-K(1)-O(8)#3	88.71(6)	O(9)-B(5)-O(8)	122.8(2)
F(2)#3-K(1)-O(8)#3	58.69(5)	O(9)-B(5)-O(6)#11	123.7(2)
F(1)#1-K(1)-O(6)	158.89(6)	O(8)-B(5)-O(6)#11	113.46(19)
O(7)#2-K(1)-O(6)	92.56(6)	F(1)-B(6)-F(2)	105.83(18)
F(2)#3-K(1)-O(6)	100.33(4)	F(1)-B(6)-O(7)	108.57(18)
O(8)#3-K(1)-O(6)	47.03(5)	F(2)-B(6)-O(7)	111.20(19)
F(1)#1-K(1)-O(4)#2	89.23(4)	F(1)-B(6)-O(5)	108.6(2)
O(7)#2-K(1)-O(4)#2	59.80(5)	F(2)-B(6)-O(5)	107.46(18)
F(2)#3-K(1)-O(4)#2	168.41(5)	O(7)-B(6)-O(5)	114.79(18)
O(8)#3-K(1)-O(4)#2	125.79(5)		

Symmetry transformations used to generate equivalent atoms:

#1 -x,y-1/2,-z+1/2	#2 -x,-y+2,-z+1	#3 x-1,-y+3/2,z-1/2	#4 x,-y+3/2,z-1/2
#5 x-1,y,z-1	#6 -x+1,y-1/2,-z+3/2	#7 x,-y+3/2,z+1/2	#8 -x+1,-y+2,-z+2
#9 -x,-y+1,-z+1.	#10 x+1,y,z+1	#11 x+1,-y+3/2,z+1/2	#12 -x,y+1/2,-z+1/2
#13 -x+1,y+1/2,-z+	+3/2		

_	~ .	~				-
	Compounds	Space		FBB	Anionic	Rfes
		groups			tramework	
1	$Na_3B_3O_3F_6$	C2/c	BO_2F_2	$B_3O_3F_6$	$[B_3O_3F_6]$ cluster	[1]
2	$K_3B_3O_3F_6$	$P2_{1}/n$	BO_2F_2	$B_3O_3F_6$	$[B_3O_3F_6]$ cluster	[2]
3	$K_{0.42}Rb_{2.58}B_3O_3F_6$	Pbcn	BO_2F_2	$B_3O_3F_6$	$[B_3O_3F_6]$ cluster	[3]
4	$Cs_{1.29}Rb_{1.71}B_3O_3F_6$	$P2_{1}/c$	BO_2F_2	$B_3O_3F_6$	$B_3O_3F_6$ cluster	[3]
5	$Na_{0.76}Rb_{2.24}B_3O_3F_6$	$P2_{1}/c$	BO_2F_2	$B_3O_3F_6$	$B_3O_3F_6$ cluster	[3]
6	$K_{2.64}Cs_{0.36}B_3O_3F_6$	$P2_{1}/c$	BO_2F_2	$B_3O_3F_6$	B ₃ O ₃ F ₆ cluster	[3]
7	$K_{1.66}Rb_{1.34}B_3O_3F_6$	$P2_{1}/c$	BO_2F_2	$B_3O_3F_6$	B ₃ O ₃ F ₆ cluster	[3]
8	$KCs_2B_3O_3F_6$	$P2_{1}/c$	BO_2F_2	$B_3O_3F_6$	B ₃ O ₃ F ₆ cluster	[3
9	$Rb_3B_3O_3F_6$	Pbcn	BO_2F_2	$B_3O_3F_6$	B ₃ O ₃ F ₆ cluster	[3
10	$K_2RbB_3O_3F_6$	$P2_{1}/c$	BO_2F_2	$B_3O_3F_6$	$B_3O_3F_6$ cluster	[3]
11	$Cs_3B_3O_3F_6$	Pbcn	BO_2F_2	$B_3O_3F_6$	$B_3O_3F_6$ cluster	[4]
12	$K_{10}B_{13}O_{15}F_{19}$	R3m	$BO_{3,} BO_2F_2$	$B_{10}O_{12}F_{13}$	$B_{10}O_{12}F_{13}$ and	[5]
			BO ₃ F	and	$B_{10}O_{12}F_{13}$ cluster	
				$B_3O_3F_6$		
13	$Rb_{10}B_{13}O_{15}F_{19}$	R3m	$BO_{3,} BO_2F_2$	$B_{10}O_{12}F_{13}$	$B_{10}O_{12}F_{13}$ and	[5]
			BO ₃ F	and	$B_{10}O_{12}F_{13}$ cluster	
				$B_3O_3F_6$		
14	$Ba(B_2OF_3(OH)_2)_2$	C2/m	BOF_2	$B_2OF_3(OH)$	$[B_2OF_3(OH)]$	[6]
			$BO(OH)_2$	2	cluster	
15	BaBO ₃ F	Pnma	BO_2F_2	BO_2F_2	[BOF ₃] chain	[7]
16	$Li_2B_3O_4F_3$	$P2_{1}2_{1}2_{1}$	BO ₃ ,BO ₃ F,	$B_3O_5F_3$	[B ₃ O ₄ F ₃] chain	[8]
			BO_2F_2			
17	BiB_2O_4F	<i>P</i> 3 ₂	BO_4 , BO_3F	B_2O_6F	[B ₂ O ₄ F] chain	[9]
18	$K_3B_6O_9F_3$	$P2_{1}/c$	BO_{3} , BO_{4}	$B_6O_{11}F_3$	[B ₆ O ₉ F ₃] layer	[10]
			BO_2F_2			
			BO ₃ F			
19	$Li_2Na_{0.9}K_{0.1}B_5O_8F_2$	Pbca	$BO_{3,} BO_2F_2$	$B_5O_{10}F_2$	[B ₅ O ₈ F ₂] layer	[11]
			BO ₃ F			
20	$BaB_2O_3F_2$	$P2_1$	BO ₄ , BO ₃ F	B_2O_6F	[B ₂ O ₃ F] layer	[12]
21	$SnB_2O_3F_2$	$P3_1m$	BO ₃ F	$B_2O_5F_2$	[B ₂ O ₃ F] layer	[13, 14]
22	$PbB_2O_3F_2$	$P3_1m$	BO ₃ F	$B_2O_5F_2$	[B ₆ O ₁₂ F ₆] layer	[14]
23	KNiB ₄ O ₆ F ₃	$P2_{1}/c$	BO ₃ ,BO ₃ F	$B_4O_6F_4$	[B ₃ O ₆ F ₃] layer	[15]
24	$Na_2B_6O_9F_2$	$P2_{1}/c$	BO ₃ ,BO ₃ F	$B_6O_{11}F_2$	[B ₆ O ₉ F ₂] layer	[16]
25	NaKB ₆ O ₉ F ₂	$P2_{1}/n$	BO ₃ ,BO ₄ ,	$B_6O_{11}F_2$	[B ₆ O ₉ F ₂] layer	
			BO_2F_2			
26	$NaRbB_6O_9F_2$	$P2_{1}/n$	BO ₃ ,BO ₄ ,	$B_6O_{11}F_2$	[B ₆ O ₉ F ₂] layer	[17]

Table S3. The investigation of the reported inorganic fluorooxoborate

			BO_2F_2			
27	Ba ₃ B ₁₀ O ₁₇ F ₂ 0.1KF	$P\overline{1}$	$BO_{3} BO_{4}$	$B_{10}O_{22}F$	B ₁₀ O ₁₆ F layer	[18]
			BO ₃ F			
28	NaB ₄ O ₆ F	<i>C</i> 2	BO ₃ , BO ₃ F	B_4O_8F	[B ₄ O ₆ F] layer	[19]
29	RbB_4O_6F	$Pna2_1$	BO ₃ , BO ₃ F	B_4O_8F	[B ₄ O ₆ F] layer	[20]
30	CsB_4O_6F	$Pna2_1$	BO ₃ , BO ₃ F	B_4O_8F	[B ₄ O ₆ F] layer	[21]
31	$NH_4B_4O_6F$	$Pna2_1$	BO ₃ , BO ₃ F	B_4O_8F	[B ₄ O ₆ F] layer	[22]
32	$CaB_4O_6F_2$	$\overline{P1}$	$BO_{3,} BO_{3}F$	B_4O_8F	[B ₄ O ₆ F ₂] layer	[23]
33	$SrB_4O_6F_2$	$P\overline{1}$	BO ₃ , BO ₃ F	B_4O_8F	[B ₄ O ₆ F ₂] layer	[24]
34	$BaB_4O_6F_2$	$P2_{1}/n$	BO ₃ , BO ₃ F	B_4O_8F	[B ₄ O ₆ F ₂] layer	[23]
35	$CsRbB_8O_{12}F_2$	$P\overline{6}2c$	BO ₃ , BO ₃ F	B_4O_8F	[B ₄ O ₆ F] layer	[20]
36	$CsKB_8O_{12}F_2$	P321	BO ₃ , BO ₃ F	B_4O_8F	[B ₄ O ₆ F] layer	[20]
37	$CaB_5O_7F_3$	$Cmc2_1$	BO ₃ , BO ₃ F	$B_5O_9F_3$	[B ₅ O ₇ F ₃] layer	[24,25]
38	$SrB_5O_7F_3$	$Cmc2_1$	BO ₃ , BO ₃ F	$B_5O_9F_3$	[B ₅ O ₇ F ₃] layer	[25,26]
39	$PbB_5O_7F_3$	$Cmc2_1$	BO ₃ , BO ₃ F	$B_5O_9F_3$	[B ₅ O ₇ F ₃] layer	[27]
40	LiB ₆ O ₉ F	$Pna2_1$	BO ₃ , BO ₃ F	$B_6O_{11}F$	[B ₆ O ₉ F] layer	[28]
41	$BaB_8O_{18}F_2$	R3c	BO ₃ , BO ₃ F	B_4O_8F	[B ₆ O ₆ F ₂] layer	[29]
42	$Na_3B_7O_{11}F_2$	Pnma	BO ₃ ,BO ₄ ,	$B_7O_{13}F_2$	$[B_7O_{13}F_2]$	[30]
			BO_2F_2		network	
43	$Li_2B_6O_9F_2$	Сс	BO ₃ ,BO ₄ ,	$B_6O_{11}F_2$	[B ₆ O ₉ F ₂] network	[31]
			BO_2F_2			
44	PbB ₅ O ₈ F	Pbca	BO ₃ , BO ₄ ,	$B_5O_{10}F$	[B ₅ O ₈ F ₃] network	[32]
			BO ₃ F			
45	BaB ₅ O ₈ F xH ₂ O	Pbca	BO ₃ , BO ₄ ,	$B_5O_{10}F$	[B ₅ O ₈ F ₃] network	[33]
			BO ₃ F			

Uner	some bora	lies and indoio0000001ales w	Tui fixed 5D D
		structures.	
1	LBO	0.040 @ 1064 nm	[34]
2	СВО	0.059 @ 1064 nm	[34]
3	CLBO	0.049 @ 1064 nm	[34]
4	$K_3B_6O_{10}Cl$	0.048 @ 589.3 nm	[35]
5	$K_3B_6O_{10}Br$	0.046 @ 1064 nm	[36]
6	NaKB ₆ O ₉ F ₂	0.096 @ 193 nm	
		0.053 @ 1064 nm	
7	$Na_3B_7O_{11}F_2$	0.083 @ 193 nm	[30]
8	$Li_2B_6O_9F_2$	0.07 @ 1064 nm	[31,37]
9	PbB ₅ O ₈ F	0.0685 @ 1064 nm	[32]
10	BaB ₅ O ₈ F xH ₂ O	0.093 @ 193 nm	[33]

Table S4. The birefringence of some borates and fluorooxoborates with fixed 3D B-O/F network

Figure S1. The 16-member ring(a) and super large rectangular ring in the puckered layers; (c), (d) is the topological model of NaKB₆O₉F₂(The Schläfli symbol, as analyzed by the TOPOS 4.0 program, is $\{6^{3}\}$).

References

1. G. Cakmak, T. Pilz, M. Jansen, Z. Anorg. Allg. Chem., 2012, 638, 1411-1415.

2. H. P. Wu, H. W. Yu, Q. Bian, Z. H. Yang, S. J. Han, S. L. Pan, *Inorg. Chem.*, 2014, 53, 12686-8.

3. W. Y. Zhang, Z. L. Wei, Z. H. Yang, S. L. Pan, Inorg. Chem., 2019, 58, 13411-13417.

4. W. Y. Zhang, Z. L. Wei, Z. H. Yang, S. L. Pan, Inorg. Chem., 2020, 59, 3274-3280.

5. M. Q. Gai, Y. Wang, T. H. Tong, L. Y. Wang, Z. H. Yang, X. Zhou, S. L. Pan, *Chem. Commun.*, 2020, **56**, 3301-3304.

6. D. Q. Jiang, Y. Wang, H. Li, Z. H. Yang, S. L. Pan, *Dalton. Trans.*, 2018, 47, 5157-5160.

7. T. Pilz, H. Nuss, M. Jansen, J. Solid State Chem., 2012, 186, 104-108.

8. R. H. Cong, Y. Wang, L. Kang, Z. Y. Zhou, Z. H. Lin, T. Yang, *Inorg. Chem. Front.*, 2015, **2**, 170-176.

9. G. P. Han, G. Q. Shi, Y. Wang, B. B. Zhang, S. J. Han, F. F. Zhang, Z. H. Yang, S. L. Pan, *Chem. Eur. J.*, 2018, **24**, 4497-4502.

10. S. J. Han, Y. Wang, B. B. Zhang, Z. H. Yang, S. L. Pan, Inorg. Chem., 2018, 57, 873-878.

11. M. Cheng, W. Q. Jin, Z. H. Yang, S. L. Pan, *Inorg Chem*, 2020, DOI: 10.1021/acs.inorgchem.0c02213.

12. C. M. Huang, F. F. Zhang, H. Li, Z. H. Yang, H. W. Yu, S. L. Pan, *Chem. Eur. J.*, 2019, **25**, 6693-6697.

13. S. G. Jantz, M. Dialer, L. Bayarjargal, B. Winkler, van L. Wullen, F. Pielnhofer, J. Brgoch, R. Weihrich, H. A. Hoppe, *Adv. Opt. Mater.*, 2018, **6**, 1800497.

14. M. Luo, F. Liang, Y. Song, D. Zhao, N. Ye, Z. Lin, J. Am. Chem. Soc., 2018, 140, 6814-6817.

15. C. Tao, R. K. Li, *Eur. J.*, 2020, **26**, 3709-3712.

16. G. Q. Shi, F. F. Zhang, B. B. Zhang, D. W. Hou, X. L. Chen, Z. H. Yang, S. L. Pan, *Inorg. Chem.*, 2017, **56**, 344-350.

17. S. J. Han, B. B. Zhang, Z. H. Yang, S. L. Pan, Chem. Eur. J., 2018, 24, 10022-10027.

18. Y. H. Li, H. W. Yu, G. P. Han, H. Li, Z. H. Yang, S. L. Pan, Chem. Commun., 2019, 55,

8923-8926.

 Z. Z. Zhang, Y. Wang, B. B. Zhang, Z. H. Yang, S. L. Pan, *Angew. Chem. Int. Ed. Engl.*, 2018, 57, 6577-6581.

Y. Wang, B. B. Zhang, Y Z. H. ang, S. L. Pan, *Angew. Chem. Int. Ed.*, 2018, **57**, 2150-2154.
X. F. Wang, Y. Wang, B. B. Zhang, F. F. Zhang, Z. H. Yang, S. L. Pan, *Angew. Chem. Int. Ed.*

Engl., 2017, **56**, 14119-14123.

22. G. Q. Shi, Y. Wang, F. F. Zhang, B. B. Zhang, Z. H. Yang, X. Hou, S. L. Pan, K. R. Poeppelmeier, *J. Am. Chem. Soc.*, 2017, **139**, 10645-10648.

23. Z. Z. Zhang, Y, Wang, B. B. Zhang; H. Z. Yang, S. L. Pan, *Chem. Eur. J.*, 2018, 24, 11267-11272.

24. Z. Z. Zhang, Y. Wang, B. B. Zhang, Z. H. Yang, S. L. Pan, *Inorg. Chem.*, 2018, 57, 4820-4823.

25. M. Luo, F. Liang, Y. Song, D. Zhao, N. Ye, Z. Lin, J. Am. Chem. Soc., 2018, 140, 6814-6817.

26. M. Mutailipu, M. Zhang, B. B. Zhang, L. Y. Wang, Z. H. Yang, X. Zhou, S. L. Pan, *Angew. Chem. Int. Ed.*, 2018, **57**, 6095–6099.

27. S. J. Han, M. Mutailipu, A. Tudi, Z. H. Yang, S. L. Pan, Chem. Mater., 2020, 32, 2172-2179.

28. G. Cakmak, J. Nuss, M. Jansen, Z. Anorg. Allg. Chem., 2009, 635, 631-636.

29. Z. Z. Zhang, Y. Wang, H. Li, Z. H. Yang, S. L. Pan, Inorg. Chem. Front., 2019, 6, 546-549.

30. C. C. Tang, X. X. Jiang, W. L. Yin, L. J. Liu, M. J. Xia, Q. Huang, G. M. Song, X. Y. Wang,

Z. S. Lin, C. T. Chen, *Dalton Trans.*, 2019, 48, 21-24.

31. T. Pilz, M. Jansen, Z. Anorg. Allg. Chem., 2011, 637, 2148-2152

32. M. Mutailipu, M. Zhang, B. B. Zhang, Z. H. Yang, S. L. Pan, *Chem. Commun.*, 2018, **54**, 6308-6311.

33. C. M. Huang, G. P. Han, H. Li, F. F. Zhang, Z. H. Yang, S. L. Pan, *Dalton. Trans.*, 2019, **48**, 6714-6717.

34. C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, S. Uda, M. Yoshimura,

Y .Kaneda, Nonlinear Optical Borate Crystals, Wiley-VCH V erlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany, 2012

35. H. Wu, S. Pan, H. Yu, D. Jia, A. Chang, H. Li, F. Zhang, X. Huang, *CrystEng Comm.* 2012, 14, 799-799d.

36. M. Zhang, X. Su, S. Pan, Z. Wang, H. Zhang, Z. Y ang, B. Zhang, L. Dong, Y. Wang, F. Zhang, Y. Yang, *J. Phys. Chem. C* 2014, **118**, 11849-11856.

37. B. B. Zhang, G. Q. Shi, Z. H. Yang, F. F. Zhang, S. L. Pan, *Angew. Chem. Int. Edit.*, 2017, **56**, 3916-3919.