High Efficient and Continuous Triboelectric Power Harvesting based on Porous β -phase Poly (vinylidene fluoride) Aerogel

Minmin Wang,^{[a]#} Weiqun Liu,^{[a]#} Xu Shi,^{[a]#} Jinyang Pan^[a], Bing Zhou,^[a] Jin Wang,^{*[a,b]} Tongming Sun,^{*[a]} Yanfeng Tang^{*[a,b]}

- Nantong Key Laboratory of Intelligent and New Energy Materials
- # These authors contributed equally to this work.

[[]a] M. Wang, W. Liu, X. Shi, J. Pan, B. Zhou, Dr. J. Wang, Dr. T. Sun, Dr. Y. Tang School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China E-mail: wangjin110@ntu.edu.cn; stm7314@ntu.edu.cn; tangyf@ntu.edu.cn
[b] Dr. J. Wang, Dr. Y. Tang
[b] Nantong Value Angeleration of Intelligent and New Energy Materials

Figure S1. Schematic of TENG based on β -phase PVDF aerogel.

Calculation of aerogel porosity: 1-3

The densities of the solid materials (P_s) were calculated according to Equation S1 based on the solid density of each component and their weight ratios used in the formulation,

$$\rho_{s} = \frac{1}{\frac{w_{P(BA-BMA)} + w_{CMC}}{\rho_{P(BA-BMA)} + \rho_{CMC}}} \tag{S1}$$

where *W* was the weight percentage of the different components, and $P_{P(BA-BMA)}$ and P_{CMC} were the solid densities of P(BA-BMA) and CMC, respectively. The solid densities for P(BA-BMA) and CMC used here were 1080 and 600 kg m⁻³, respectively, according to the manufacturer's data sheet. The porosities of the porous aerogel samples were calculated according to Equation S2,

Porosity =
$$\left(1 - \frac{\rho_a}{\rho_s}\right) \times 100\%$$
 (S2)

where P_a was the measured density of each porous aerogel sample, and P_s was the density of its corresponding solid sample.

Samples	ρ _a (kg m ⁻³)	ρ _s (kg m ⁻³)	Porosity (%)
CMC aerogel	10	600	98.3%
Compressed CMC aerogel film	208.2	600	65.3%
PVDF aerogel	41.1	1800	97.7%
Compressed PVDF aerogel	537.8	1800	70.1%
film			

Table S1 Parameters ρ_a , ρ_s , and porosities of the samples.

Figure S2. The I_{sc} of TENG connected in reverse under a compressive stress of 0.08 MPa at a frequency of 10 Hz.

Figure S3. (a) Schematic of TENG based on dense PVDF film. (b) The V_{oc} and (c) I_{oc} of TENG based on dense PVDF film under a compressive stress of 0.08 MPa at a frequency of 10 Hz. (d, e) Output performance for TENG based on dense PVDF film loaded with a resistance from 10⁶ Ω to 10⁸ Ω .

Figure S4. The V_{oc} and I_{sc} of TENG based on β -phase PVDF aerogel at different frequencies under a periodic pressure of 0.08 MPa.

Figure S5. The V_{oc} and I_{sc} of TENG based on β -phase PVDF aerogel at different pressure under a frequency of 10 Hz.

Figure S6. Schematic of the self-powered motion sensor.

References

- 1. Y. Tang, Q. Zheng, B. Chen, Z. Ma and S. Gong, *Nano Energy*, 2017, 38, 401-411.
- 2. Q. Zheng, Z. Cai and S. Gong, J. Mater. Chem. A, 2014, 2, 3110-3118.
- 3. Q. Zheng, Z. Cai, Z. Ma and S. Gong, ACS Appl. Mater. Interfaces, 2015, 7, 3263-3271.