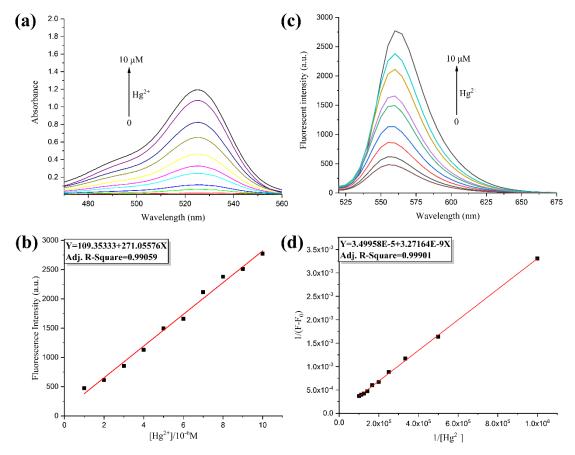
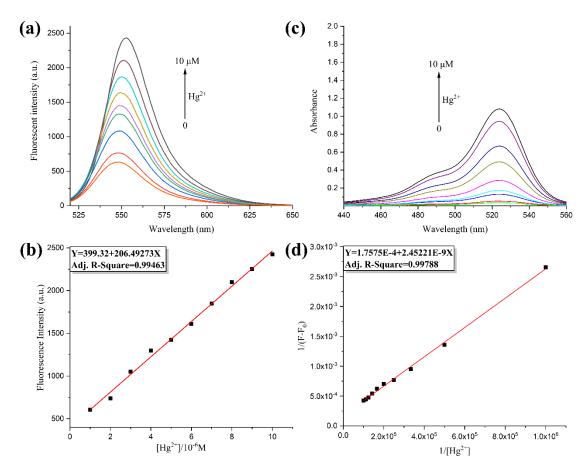
Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

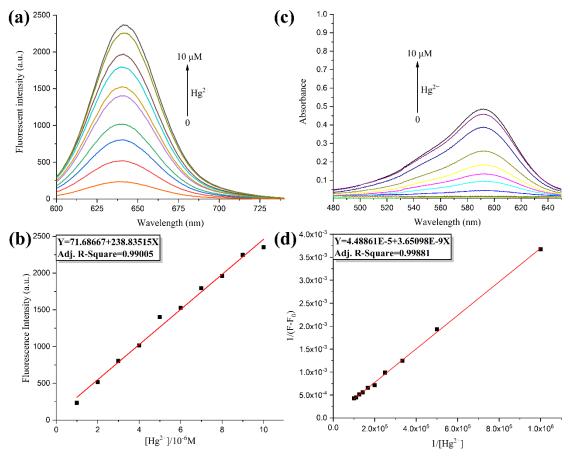
New Journal of Chemistry
Electronic Supplementary Information
for


## Four Xanthene-fluorene based probes for the detection of $Hg^{2+}$ ions and its application in strip test and biological cells

Guozhi Zhao<sup>1</sup> Yucheng Sun<sup>1</sup> Hongdong Duan<sup>1\*</sup>


1School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, 250353, China \*Corresponding author.

Tel: +86 13153035598


E-mail address: dhd@qlu.edu.cn(H. Duan)



**Fig. S1.** (a) Absorption spectra of Probe 2 (10 μM) upon the addition of  $Hg^{2^+}$  (1.0-10.0 μM) in DMSO: PBS buffer solution (1:1, v/v). (b) Linear curve in the concentration range of 0.1 μM to 10 μM. (insert) the corresponding fluorescence spectra. (c) Fluorescence spectra of Probe 2 (10 μM) upon the addition of  $Hg^{2^+}$  (1.0-10.0 μM) in DMSO: PBS buffer solution (1:1, v/v). (d) Benesi-Hildebrand plot of Probe 2 using 1:1 stoichiometry for association between probe1 and  $Hg^{2^+}$ .



**Fig. S2.** (a) Absorption spectra of Probe 3 (10 μM) upon the addition of  $Hg^{2^+}$  (1.0-10.0 μM) in DMSO: PBS buffer solution (1:1, v/v). (b) Linear curve in the concentration range of 0.1 μM to 10 μM. (insert) the corresponding fluorescence spectra. (c) Fluorescence spectra of Probe 3 (10 μM) upon the addition of  $Hg^{2^+}$  (1.0-10.0 μM) in DMSO: PBS buffer solution (1:1, v/v). (d) Benesi-Hildebrand plot of Probe 3 using 1:1 stoichiometry for association between probe1 and  $Hg^{2^+}$ .



**Fig. S3.** (a) Absorption spectra of Probe 4 (10 μM) upon the addition of  $Hg^{2+}$  (1.0-10.0 μM) in DMSO: PBS buffer solution (1:1, v/v). (b) Linear curve in the concentration range of 0.1 μM to 10 μM. (insert) the corresponding fluorescence spectra. (c) Fluorescence spectra of Probe 4 (10 μM) upon the addition of  $Hg^{2+}$  (1.0-10.0 μM) in DMSO: PBS buffer solution (1:1, v/v). (d) Benesi-Hildebrand plot of Probe 4 using 1:1 stoichiometry for association between probe1 and  $Hg^{2+}$ .