Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Effects of Sn on the catalytic performance for one step syngas to DME in

Slurry Reactor

Lin Zhang,^{a,c} Zhongkai Bian,^a Kai Sun,^{b*} Wei Huang^{a*}

^{a.} Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi province, Taiyuan University of Technology, Taiyuan 030024, China.

^{b.} School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.

^{c.} State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China

 $Fig. S1. \ N_2 \text{-} adsorption \text{-} desorption \ is otherms (a) \ and \ pore \ size \ distribution \ curves (b) \ of \ parent \ and$

Sn-modified catalysts

Fig.S2. The catalytic activity and product distribution (mol%) of parent and Sn-modified catalysts Reaction condition: T = 280 °C, P = 4.0 MPa, $H_2/CO = 1:1$

Fig.S3 XRD patterns of parent and Sn-modified catalysts after reaction

Table S1 Results of N2 adsorption-desorption, XRD and XPS over parent and Sn-modified

- Catalyst	N ₂ adsorption-desorption			Average			
	BET Average surface pore	Pore	orain siza	Surface	Surface	Surface	
		pore diameter	volume	grann size	Al/Sn ^c	Cu/Zn c	(Cu+Zn)/Al c
	(m^2/g)	(nm) ^a	(cm^3/g)	(nm) ^b			
Cat-00	179.5	0.77	18.4	22.5		0.21	0.47
Cat-11	209.7	0.93	17.8	22.8	218.86	0.21	0.44
Cat-16	188.6	0.88	18.7	23.2	131.80	0.37	0.28
Cat-33	218.6	0.79	14.5	19.3	33.11	0.17	0.43

catalysts after reaction

^a Average pore diameter was calculated by desorption data.

^b Average grain size of Cu was calculated by Scherrer Formula (2 $\theta = 43.4^{\circ}$)

^c Surface element was obtained by XPS

Fig.S4. N₂-adsorption-desorption isotherms and pore size distribution curves of parent and Sn-

modified catalysts after reaction

Fig.S5. XPS spectra of parent and Sn-modified catalysts after reaction (a)Cu 2p_{3/2} region (b) Sn

 $3d_{5/2}$ region