Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Neutral Noble-Metal-Free VCoO₂ and CrCoO₂ Cluster Catalysts for

CO Oxidation by O₂

Suresh Sampathkumar, Selvarengan Paranthaman*

Department of Physics and International Research Centre, Kalasalingam Academy of

Research and Education (Deemed to be University), Krishnankoil 626 126, India.

Corresponding Author E-mail: psrengan@hotmail.com

Figure S1. Optimized TMCoO₂ (TM=Sc–Zn) clusters at B3LYP/TZVP method. (Superscript value corresponds to ground electronic state of the cluster, blue colour values represent bond distance values (in Å) and black colour values represent natural charge values respectively)

Figure S2. Optimized TMCoO₂ (TM=Sc–Zn) clusters with various spin multiplicities at PBE0/def2-TZVPP method in NWChem 6.0 program. (M denotes the spin multiplicity (2S+1), NS=Not Stable)

Figure S3. The optimized structures of interaction between $TMCoO_2$ (TM= Sc-Mn, Co) clusters with O atom at B3LYP/TZVP method. (Superscript value corresponds to ground electronic state of the clusters and blue colour values represent bond distance values (in Å))

Figure S4. The optimized structures of interaction between $TMCoO_2$ (TM=Sc–Mn, Co) clusters with O_2 molecule at B3LYP/TZVP method. (Superscript value corresponds to ground electronic state of the clusters and blue colour values represent bond distance values (in Å))

Figure S5. The optimized structures of interaction between TMCoO₂ (TM=Sc–Mn, Co) clusters with CO molecule along with its IR spectrum at B3LYP/TZVP method. (Superscript value corresponds to ground electronic state of the clusters and blue colour values represent bond distance values (in Å))

Figure S6. The HOMO and LUMO diagrams of ScCoO₂, VCoO₂, CrCoO₂ clusters and CO molecule.

Figure S7. The frontier molecular orbital diagram of TMCoO₂ (TM=Sc–Zn) clusters (Pair of active orbitals for HOMO-LUMO calculation).

Table S1. Calculated dissociation energies to remove an oxygen atom DE(O), molecular oxygen DE(O₂), doped TM atom (TM=Sc–Zn) and Co atom (energies in eV) in TMCoO₂ (TM=Sc–Zn) clusters.

TMCoO ₂	DE(O)	DE(O ₂)	DE(TM)	DE(Co)
³ ScCoO ₂	5.08	7.12	6.89	2.55
² TiCoO ₂	6.32	8.11	7.95	2.11
⁵ VCoO ₂	6.12	7.13	7.93	2.31
⁸ CrCoO ₂	4.97	4.91	6.17	2.35
⁹ MnCoO ₂	5.11	5.33	4.62	5.01
² FeCoO ₂	3.79	3.74	3.47	1.99
⁷ Co ₂ O ₂	4.68	5.25	-	4.41
⁶ NiCoO ₂	5.07	4.15	4.56	4.91
⁵ CuCoO ₂	4.23	3.32	3.58	6.35
⁴ ZnCoO ₂	4.20	3.38	2.37	5.37

Table S2. The HOMO-LUMO gap (pair of active orbitals) values (in eV) of TMCoO₂ (TM=Sc-Zn) clusters.

TMC0O2	H-L Gap
³ ScCoO ₂	1.32
² TiCoO ₂	2.66
⁵ VCoO ₂	2.74
⁸ CrCoO ₂	1.33
⁹ MnCoO ₂	2.26
² FeCoO ₂	2.56
⁷ Co ₂ O ₂	2.82
⁶ NiCoO ₂	3.15
⁵ CuCoO ₂	3.44
⁴ ZnCoO ₂	2.43

Table S3. Calculated dissociation energies to remove an oxygen atom DE(O), molecular oxygen DE(O₂), doped TM atom (TM=Sc–Zn) and Co atom (energies in eV) and vertical ionization energy (VIE) of TMCoO₃₋₄ (TM=V, Cr) clusters.

TMCoO ₃₋₄	DE(O)	DE(O ₂)	DE(TM)	DE(Co)	VIE
³ VCoO ₃	5.89	6.90	10.59	4.90	9.06
⁵ VCoO ₄	3.70	4.48	10.56	6.16	9.72
² CrCoO ₃	5.90	5.76	7.96	5.22	11.12
² CrCoO ₄	3.26	4.04	7.49	4.91	10.40

Table S4. Relative Energy (ΔE), Enthalpy of Reaction (ΔH) and Gibbs Free Energy (ΔG) changes during the CO oxidation reaction process with VCoO₂ and CrCoO₂ cluster (energies in eV).

	B3	LYP/TZ	VP	M06/TZVP		B3LYP/TZVP		M06/TZVP	
species	ΔΕ	ΔH	ΔG	ΔΕ	species	ΔΕ	ΔH	ΔG	ΔΕ
$VC_0O_4 + CO \rightarrow VC_0O_3 + CO_2$			$CrC_0O_4 + CO \rightarrow CrC_0O_3 + CO_2$						
RC1	0.00	0.00	0.00	0.00	RC4	0.00	0.00	0.00	0.00
IM1	-2.12	-2.18	-1.67	-2.32	IM9	-2.35	-2.39	-1.92	-2.70
TS1	-1.11	-1.03	-0.51	-1.05	TS5	-0.73	-0.75	0.03	-1.53
IM2	-2.22	-2.33	-1.93	-2.23	IM10	-1.89	-1.92	-1.18	-2.28
PC1	-1.74	-1.76	-1.73	-1.80	PC4	-2.18	-2.19	-2.21	-2.31
$VC_0O_3 + 2CO \rightarrow VC_0O_2(CO) + CO_2$			$CrC_0O_3 + 2CO \rightarrow CrC_0O_2(CO) + CO_2$						
RC2	0.00	0.00	0.00	0.00	RC5	0.00	0.00	0.00	0.00
IM3	-0.82	-0.83	-0.41	-0.53	IM11	-0.38	-0.40	-0.01	-0.92
TS2	-0.01	-0.05	0.43	0.16	TS6	0.30	0.25	0.35	0.06
IM4	-0.44	-0.48	-0.01	-1.08	IM12	-0.26	-0.41	-0.09	-1.02
PC21	0.45	0.43	0.46	-0.16	PC51	0.46	0.43	0.44	0.38
IM5	-0.87	-0.89	-0.07	-0.38	IM13	-0.83	-0.92	-0.02	-1.35
TS3	-0.30	-0.31	0.23	-0.18	TS7	-0.02	-0.08	0.96	-0.32
IM6	-1.39	-1.53	-0.88	-0.89	IM14	-0.83	-0.87	0.19	-1.39
PC2	-0.67	-0.70	-0.27	-0.33	PC5	-1.07	-1.11	-0.71	-2.00
V		$(1) + O_2 - (1)$	VCoO ₄	+ CO	$CrCoO_2(CO) + O_2 \rightarrow CrCoO_4 + CO$				
RC3	0.00	0.00	0.00	0.00	RC6	0.00	0.00	0.00	0.00
IM7	-2.31	-2.36	-1.94	-2.36	IM15	-1.06	-1.12	-0.39	-0.11
TS4	-0.82	-0.86	-0.15	-0.87	TS8	0.40	0.24	1.02	0.51
IM8	-4.35	-4.40	-3.93	-4.81	IM16	-1.50	-1.51	-1.07	-0.72
PC3	-3.36	-3.38	-3.31	-3.60	PC6	-2.52	-2.55	-2.39	-2.50
					RC6	0.00	0.00	0.00	0.00
					IM17	-1.72	-1.74	-1.27	-2.54
					TS9	-1.21	-1.26	-0.43	-1.97
					IM18	-3.83	-3.86	-3.36	-4.71
					PC6	-3.07	-3.10	-2.94	-3.79

VCoO ₂			CrCoO ₂		
reaction	k	Value	reaction	k	Value
(ii)	k1	2.56×10^{-19}	(vii)	k5	1.39 × 10 ⁻³⁰
(iii)	k2	1.42×10^{-23}	(viii)	k6	9.73 × 10 ⁻¹⁰
(iv)	k3	1.01×10^{-20}	(ix)	k7	6.68×10^{-10}
(v)	k4	4.97×10^{-22}	(x)	k8	2.50×10^{-18}

Table S5. The scaled rate constant values for the CO oxidation reaction with $VCoO_2$ and $CrCoO_2$ cluster.

Table S6. Calculated free energy span (δE) values for the CO oxidation reaction with VCoO₂ and CrCoO₂ cluster (energies in kcal/mol).

Reaction	δΕ
$VCoO_4 + CO \rightarrow VCoO_3 + CO_2$	26.48
$VCoO_3 + 2CO \rightarrow VCoO_2(CO) + CO_2$	31.59
$VCoO_2(CO) + O_2 \rightarrow VCoO_4 + CO$	34.51
$CrCoO_4 + CO \rightarrow CrCoO_3 + CO_2$	37.98
$CrCoO_3 + 2CO \rightarrow CrCoO_2(CO) + CO_2$	25.10
$CrCoO_2(CO) + O_2 \rightarrow CrCoO_4 + CO$	32.95