Supporting Information

Controllable Polymeric Pseudo-Crown Ether Fluorescent Sensors: Responsiveness and Selective Detection of Metal Ions

Le Zhao¹[†], Yong-Guang Jia^{1,3}[†], Song Meng Wang¹, Yi Yang¹, Ling Yan Liu^{*1}, Wei Xing Chang¹, and Jing Li^{*1, 2}

¹ the State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China

² Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 94#, Nankai District, Tianjin 300071, P. R. China

³ School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China

[†] Co-first author

* E-mail: *liulingyan@nankai.edu.cn, *lijing@nankai.edu.cn.

Figure S1. MALDI-TOF mass spectrum of copolymer PDSM1 (top) and an enlarged zone (bottom)

Figure S2. MALDI-TOF mass spectrum of copolymer PDSM2 (top) and an enlarged zone (bottom)

Figure S3. MALDI-TOF mass spectrum of copolymer PDSM3 (top) and an enlarged zone (bottom)

Figure S4. GPC curve of **PDSM1**

Figure S5. GPC curve of PDSM2

Figure S7. ¹H NMR spectra of PDSM-PEG-F (DMSO-*d*₆, 25 ^oC)

Figure S8. ¹H NMR spectrum of **PDSM2-PEG1-F1** (CDCl₃, 25 ^oC)

Figure S9. ¹H NMR spectrum of PDSM3-PEG1-F1 (CDCl₃, 25 ^oC)

Figure S10. FT-IR spectrum of the grafting cyclopolymer PDSM2-PEG1-F1

Figure S11. FT-IR spectrum of the grafting cyclopolymer PDSM3-PEG1-F1

Figure S12. UV-vis spectra of 1-Pyrenemethylamine hydrochloride and **PDSM-PEG-F** (THF : $H_2O = 1 : 1$, [1-Pyrenemethylamine hydrochloride] = 1×10^{-4} mol/L, [**PDSM-PEG-F**] = 2.5×10^{-2} g/L)

Figure S13. TGA profiles for the different PDSM-PEG-F copolymers

Figure S14. TGA profiles for the different PDSM2-PEG1-F1 copolymers

Figure S15. TGA profiles for the different PDSM3-PEG1-F1 copolymers

Figure S16. Fluorescent spectra of pyrene after adding Cu^{2+} under room-temperature (pH = 2.0, λ excitation = 345 nm, slit width = 5 nm, [Pyrene] = 10^{-7} M)

Figure S17. Interference of Metal ions on the detection of **PDSM1-PEG1-F1** to Cu^{2+} or Ag^+ , Mixed ions: K⁺, Na⁺, Mg²⁺, Ca²⁺ and Fe³⁺, 10 μ M to each metal ion.

Figure S18. The GPC of polystyrene-*co*-polymaleic anhydride (PSMA).

Figure S19. The ¹H NMR of PSMA-PEG2-F1 (CDCl₃).

Page 1/1

Figure S20. The IR of PSMA-PEG2-F1.