Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

SUPPLEMENTARY INFORMATION

1. Synthesis of Alverine (1)

The synthesis of alverine (1) was carried out according to the procedure previously described by Shakhmaev et al.¹

1a. Synthesis of (2E)-3-chloro-*N*-[(2E)-3-chloroprop-2-en-1-yl]-*N*-ethylprop-2-en-1-amine (<u>3</u>)

(*E*)-1,3-dichloropropene ($\underline{2}$) (0.46 mL, 4.5 mmol), K₂CO₃ (1.050 g, 7.5 mmol) and EtNH₂·HCl (0.193 g, 2.3 mmol) were dissolved in anhydrous MeCN (5.6 mL). The reaction mixture was allowed to stir at 100 °C for 16 h until the end of the reaction, as indicated by t.l.c. (CH₂Cl₂/MeOH 5%). The suspension was cooled down to room temperature, filtered and the solvent was removed under reduced pressure. The product was isolated by distillation by heating under high vacuum (2 x 10-1Pa) to obtain (2*E*)-3-chloro-*N*-[(2*E*)-3-chloroprop-2-en-1-yl]-*N*-ethylprop-2-en-1-amine ($\underline{3}$) as a yellowish liquid (0.40 g, 90%).

NMR-¹H (400 MHz, \delta_{H}, CDCl₃): δ = 6.16 (d, J_{H-H}=13.3 Hz, 2H, H-3), 5.98 (m, 2H, H-2), 3.14 (d, J_{H-H}=6.8 Hz, 4H, H-1), 2.56 (q, J_{H-H}=7.0 Hz, 2H, CH₃C<u>H₂N), 1.13 (t, J_{H-H}=7.1 Hz, 3H, CH₃CH₂N).</u>

NMR-¹³C (100.6 MHz, \delta_{C}, CDCl₃): \delta= 130.5 (C-2), 120.0 (C-3), 52.8 (C-1), 46.9 (CH₃<u>C</u>H₂N), 12.0 (<u>C</u>H₃CH₂N).

Figure S1. NMR-¹³C of (2*E*)-3-chloro-*N*-[(2*E*)-3-chloroprop-2-en-1-yl]*N*-ethylprop-2-en-1amine ($\underline{3}$)

amine (<u>4</u>)

1b. Synthesis of (2*E*)-*N*-ethyl-3-phenyl-*N*-[(2*E*)-3-phenylprop-2-en-1-yl]-prop-2-en-1-amine (<u>4</u>)

Fe(acac)₃ (0.012 g, 0.03 mmol) was dissolved in dry THF (1 mL) and added to a solution of $\underline{3}$ (0.306 g, 1.55 mmol) at 0 °C and in an inert atmosphere. Next was added TMEDA (0.03 mL, 0.15 mmol) and PhMgBr (2 mL, 3.2 mmol). The mixture was stirred at room temperature for 2 h until the end of the reaction, as indicated by t.l.c. (Hex/AcOEt 2:1). Water was then added (2mL) and the crude was extracted with AcOEt (3 x 7 mL). The organic phases were collected and washed with saturated aqueous solution of NaCl, dried with anhydrous Na₂SO₄ and concentrated via rotary evaporation. Finally, the product was isolated by column chromatography using as eluent Hex/AcOEt (2:1) obtaining a yellow liquid (4, 0.24 g, 55%).

RMN-¹H (400 MHz, \delta_{H}, CDCl₃): δ = 7.43-7.26 (m, 10H, H-Ar), 6.58 (d, J_{H-H}=15.8 Hz, 2H, H-3), 6.35 (m, 2H, H-2), 3.38 (d, J_{H-H}=6.8 Hz, 4H, H-1), 2.71 (m, 2H, CH₃CH₂N), 1.17 (t, J_{H-H}=7.1 Hz, 3H, CH₃CH₂N).

RMN-¹³C (100.6 MHz, \delta_{C}, CDCl₃): \delta= 137.0 (C-4), 133.1 (C-3), 128.6 (C-5,6,8,9), 127.5 (C-2), 126.3 (C-7), 55.7 (C-1), 47.2 (CH₃<u>C</u>H₂N), 11.7 (<u>C</u>H₃CH₂N).

Figure S4. NMR-¹³C of (2*E*)-*N*-ethyl-3-phenyl-*N*-[(2*E*)-3-phenylprop-2-en-1-yl]prop-2-en-1amine ($\underline{4}$)

1c. Synthesis of Alverine (N-ethyl-3-phenyl-N-(3-phenylpropyl)-propan-1-amine, 1)

A solution of NaOH 0.1M in EtOH 95% (1.8 mL) was added to Pd/C 10% (5 mg) and $\underline{4}$ (0.1 g, 0.36 mmol). This suspension was stirred under an atmosphere of H₂ for 5 h until the end of the reaction, as indicated by t.l.c. (Hex/AcOEt 2:1). The mixture was filtered, concentrated and purified by column chromatography using as eluent Hex/AcOEt (9:1). The product was isolated as a yellow liquid ($\underline{1}$, 0.124 g, 72%).

RMN-¹H (400 MHz, \delta_{\text{H}}, CDCl₃): \delta= 7.34-7.21 (m, 10H, PhH), 2.67 (t, J_{H-H}=7.6 Hz, 4H, H-3), 2.61-2.50 (m, 6H, CH₃CH₂N, H-1), 1.82 (m, 4H, H-2), 1.05 (t, J_{H-H}=7.1 Hz, 3H, CH₃CH₂N).

RMN-¹³C (100.6 MHz, \delta_{C}, CDCl₃): \delta= 142.4 (C-4), 128.4 (C-6,8), 128.3 (C-5,9), 125.7 (C-7), 53.0 (C-1), 47.5 (CH₃<u>C</u>H₂N), 33.8 (C-3), 28.8 (C-2), 11.7 (<u>C</u>H₃CH₂N).

2. Synthesis of Alverine-based ILs

<u>General procedure</u>: Alverine (<u>1</u>) and an equivalent amount of the corresponding acid (p-toluensulfonic acid, salycilic acid and benzoic acid) were allowed to stir at 100 °C for 2 h.

2a. Synthesis of alverinium tosylate [ALV][TOS] (5)

The general procedure using *p*-toluensulfonic acid (0.072 g, 0.37 mmol) was applied. The product was obtained as a solid (<u>5</u>, 0.168 g, 99%); mp 65-66 °C (from MeOH)

RMN-¹H (400 MHz, \delta_{H}, CDCl₃): δ = 7.80 (d, J_{H-H}=8.1 Hz, 2H, H-2 TOS, H-6 TOS), 7.32-7.16 (m, 12H, H-Ar), 5.03 (s, 1H, N<u>H</u>), 2.81 (m, 2H, CH₃C<u>H₂</u>N), 2.71 (t, J_{H-H}=8.0 Hz, 4H, H-1 ALV), 2.65 (t, J_{H-H}=7.5 Hz, 4H, H-3 ALV), 2.38 (s, 3H, CH₃ TOS), 1.90 (m, 4H, H-2 ALV), 1.11 (t, J_{H-H}=7.2 Hz, 3H, C<u>H₃</u>CH₂N).

RMN-¹³C (100.6 MHz, δ_C, CDCl₃): 142.4 (C-1 TOS, C-4 TOS), 139.9 (C-4 ALV), 129.0 (C-3 TOS, C-5 TOS), 128.6 (C-6 ALV,C-8 ALV), 128.5 (C-5 ALV, C-9 ALV, C-2 TOS,C-6 TOS), 125.9 (C-7 ALV), 53.0 (C-1 ALV), 47.6 (CH₃<u>C</u>H₂N), 33.9 (C-3 ALV), 28.7 (<u>C</u>H₃ TOS), 21.5 (C-2 ALV), 11.7 (<u>C</u>H₃CH₂N).

HRMS (ESI) m/z (%): calcd for $[C_{20}H_{28}N]^+$: 282.2219 [M]⁺; found 282.2216 (100); calcd for $[C_{14}H_{15}O_6S_2]^-$: 343.0316 [M]⁻; found: 343.0316 (100).

Figure S7. NMR-1H of alverinium tosylate [ALV][TOS] (5)

2b. Synthesis of alverinium salicylate [ALV][SAL] (6)

<u>General procedure</u> was applied using salycilic acid (0.050 g, 0.37 mmol) to obtain a yellow liquid (**<u>6</u>**, 0.119 g, 99%).

RMN-¹H (400 MHz, \delta_{H}, CDCl₃): \delta= 7.93 (d, J_{H-H}=7.9 Hz, 1H, H-7 SAL), 7.29 (m, 5H, H-6 ALV, H-8 ALV, H-5 SAL), 7.23 (t, J_{H-H}=7.1 Hz, 2H, H-7 ALV), 7.16 (d, J_{H-H}=7.3 Hz, 4H, H-5 ALV, H-9 ALV), 6.94 (d, J_{H-H}=8.1 Hz, 1H, H-4 SAL), 6.84 (t, J_{H-H}=7.4 Hz, 1H, H-6 SAL), 3.12 (q, J_{H-H}=7.3 Hz, 2H, CH₃CH₂N), 2.99 (m, 4H, H-1 ALV), 2.69 (t, J_{H-H}=7.2 Hz, 4H, H-3 ALV), 2.03 (m, 4H, H-2 ALV), 1.23 (t, J_{H-H}=7.2 Hz, 3H, CH₃CH₂N).

RMN-¹³C (100.6 MHz, \delta_{C}, CDCl₃): δ = 174.9 (C-1 SAL), 162.1 (C-3 SAL), 140.7 (C-4 ALV), 132.8 (C-5 SAL), 130.8 (C-7 SAL), 128.6 (C-6 ALV, C-8 ALV), 128.4 (C-5 ALV, C-9 ALV), 126.3 (C-7 ALV), 119.1 (C-2 SAL), 117.8 (C-6 SAL), 116.5 (C-4 SAL), 51.3 (C-1 ALV), 46.9 (CH₃CH₂N), 33.1 (C-3 ALV), 26.0 (C-2 ALV), 9.6 (<u>CH₃CH₂N)</u>.

HRMS (ESI) *m/z* (%): calcd for [C₂₀H₂₈N]⁺: 282.2218 [M]⁺; found 282.2216 (100); calcd for [C₇H₅O₃]⁻: 137.0238 [M]⁻; found 137.0244 (100).

Figure S9. NMR-¹H of alverinium salicylate [ALV][SAL] (<u>6</u>)

Figure S10. NMR-¹³C of alverinium salicylate [ALV][SAL] (<u>6</u>)

2c. Synthesis of alverinium benzoate [ALV][BNZ] (7)

<u>General procedure</u> was applied using benzoic acid (0.043 g, 0.35 mmol) to obtain an orange liquid (7, 0.106 g, 99%).

RMN-¹H (400 MHz, δ_H, CDCl₃): δ= 8.10 (m, 1H, H-5 BNZ), 7.43 (m, 2H, H-3 BNZ, H-7 BNZ), 7.30 (m, 6H, H-Ar), 7.22 (m, 6H, H-Ar), 2.90 (q, J_{H-H}=7.2 Hz, 2H, CH₃C<u>H₂</u>N), 2.81 (m, 4H, H-1 ALV), 2.67 (t, J_{H-H}=7.5 Hz, 4H, H-3 ALV), 1.96 (m, 4H, H-2 ALV), 1.16 (t, J_{H-H}=7.2 Hz, 3H, C<u>H₃</u>CH₂N).

RMN-¹³C (100.6 MHz, δ_C, CDCl₃): δ= 172.2 (C-1 BNZ), 140.5 (C-4 ALV), 135.7 (C-2 BNZ), 130.9 (C-3,5,7 BNZ), 129.6 (C-4 BNZ, C-6 BNZ), 128.6 (C-6 ALV, C-8 ALV), 128.3 (C-5 ALV, C-9 ALV), 126.3 (C-7 ALV), 50.6 (C-1 ALV), 46.4 (CH₃<u>C</u>H₂N), 33.1 (C-3 ALV), 25.2 (C-2 ALV), 9.0 (<u>C</u>H₃CH₂N).

HRMS (ESI) *m/z* (%): calcd for [C₂₀H₂₈N]⁺: 282.2215 [M]⁺; found 282.2216 (100); calcd for [C₇H₅O₂]⁻: 121.0290 [M]⁻; found 121.0295 (100).

Figure S11. NMR-1H of alverinium benzoate [ALV][BNZ] (7)

Figure S12. NMR-¹³C of alverinium benzoate [ALV][BNZ] (7)

REFERENCES

1. R. N. Shakhmaev, A. Sh. Sunagatullina and V.V. Zorin, Russ. J. Org. Chem., 2017, 53, 832–835.