Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

ELECTRONIC SUPPLEMENTARY MATERIALS

N-Substituted tetrahydropentaazadibenzocycloheptafluorenes – a new type of condensed polyazapolycyclic system

Elena B. Rakhimova^{*}, Victor Yu. Kirsanov, Ekaterina S. Mescheryakova, Leonard M. Khalilov, Askhat G. Ibragimov

Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, 450075 Ufa, Russian Federation

Table of contents

NMR and MS spectra of compounds 2-8	2–15
X-ray data of compound 3	16–19

Figure 1. NMR and MS spectra of compound 2.

12-Cyclopropyl-12,13,13b,13c-tetrahydro-6H,11H,14H-4b,5a,10b,12,13a-

pentaazadibenzo[*a*,*h*]cyclohepta[1,2,3,4-*def*]fluorene (**3**)

Figure 2. NMR and MS spectra of compound 3.

12-Cyclopenthyl-12,13,13b,13c-tetrahydro-6H,11H,14H-4b,5a,10b,12,13a-

pentaazadibenzo[*a*,*h*]cyclohepta[*1*,*2*,*3*,*4*-*def*]fluorene (4).

Figure 3. NMR and MS spectra of compound 4.

12-Cyclohexyl-12,13,13b,13c-tetrahydro-6H,11H,14H-4b,5a,10b,12,13a-

pentaazadibenzo[*a*,*h*]cyclohepta[*1*,*2*,*3*,*4*-*def*]fluorene (5).

Figure 4. NMR and MS spectra of compound 5.

12-Cycloheptyl-12,13,13b,13c-tetrahydro-6H,11H,14H-4b,5a,10b,12,13a-

pentaazadibenzo[*a*,*h*]cyclohepta[*1*,*2*,*3*,*4*-*def*]fluorene (**6**).

Figure 5. NMR spectra of compound 6.

12-Cyclooctyl-12,13,13b,13c-tetrahydro-6H,11H,14H-4b,5a,10b,12,13a-

pentaazadibenzo[*a*,*h*]cyclohepta[*1*,*2*,*3*,*4*-*def*]fluorene (7).

Figure 6. NMR and MS spectra of compound 7.

7.284 7.155 7.020	6.690 6.621 6.444	4,920 4,896 4,808 4,808 4,435 4,435 4,435 4,435 4,435 4,435 4,337 4,337 3,336 4,337 4,337 4,337 3,3407 3,34	1.910 1.699 1.502
111	171		

12-Dibicyclo[2.2.1]hept-2-yl-12,13,13b,13c-tetrahydro-6H,11H,14H-4b,5a,10b,12,13a-

pentaazadibenzo[*a*,*h*]cyclohepta[*1*,*2*,*3*,*4*-*def*]fluorene (8).

7,1283 7,1170 7,1170 6,6693 6,6693 6,6494 6,6428 6,6428 6,6424 6,6428 6,6449 6,6429 6,6449 6,6429 6,6449 6,6429 6,6424 6,6429 6,6429 6,6424 6,4238 6,4238 6,4248 6,4238 7,017 6,428 7,017 6,428 7,017 6,428 7,017 6,428 7,017 6,428 7,017 6,428 7,017 6,428 7,017 6,428 7,017 6,428 7,017 6,428 7,017 7,017 6,428 7,017 7,017 6,428 7,017 7,017 6,428 7,017 7,017 6,428 7,017 7,017 6,428 7,017,

Figure 8. (a) The asymmetric unit of compound **3**. Non-hydrogen atoms are represented by thermal ellipsoids (p = 30%) (b) The part of the crystal structure **3**, view along *a* axis.

Table 1. Crystal data and structure refinement for compound **3**.

CCDC	1990121
Empirical formula	$C_{22}H_{25}N_5$
Formula weight	359.47
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	9.5806(4)
b/Å	18.4584(9)
c/Å	10.4334(4)
$\alpha/^{\circ}$	90
β/°	91.070(4)

$\gamma/^{\circ}$	90
Volume/Å ³	1844.74(14)
Z	4
$\rho_{calc}g/cm^3$	1.294
µ/mm ⁻¹	0.079
F(000)	768.0
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.79 to 58.022
Indexranges	$-7 \le h \le 12, -13 \le k \le 24, -14 \le l \le 14$
Reflectionscollected	8627
Independentreflections	$4221 [R_{int} = 0.0219]$
Data/restraints/parameters	4221/0/244
Goodness-of-fit on F ²	1.019
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0479, wR_2 = 0.1079$
Final R indexes [all data]	$R_1 = 0.0880, wR_2 = 0.1270$
Largest diff. peak/hole / e Å ⁻³	0.14/-0.18

Table 2. Bond Lengths for compound **3**, Å.

Bond		Bond	
N5A-C13C	1.4542(17)	C13C-C13B	1.511(2)
N5A-C6	1.4487(19)	C6A–C6	1.495(2)
N5A–C5	1.4436(19)	C6A–C7	1.384(2)
C10A-N10B	1.386(2)	C4AC14A	1.397(2)
C10A-C6A	1.404(2)	C4A–C4	1.396(2)
C10A-C10	1.398(2)	C14–C14A	1.490(2)
N12-C13	1.429(2)	C14A–C1	1.377(2)
N12-C11	1.4266(19)	C4–C3	1.373(2)
N12–C1'	1.4224(19)	С10-С9	1.378(2)
N13A-C13B	1.4526(18)	C1'–C3'	1.485(2)
N13A-C14	1.469(2)	C1'–C2'	1.493(2)
N13A-C13	1.4714(18)	С7–С8	1.377(2)
N10B-C13C	1.4419(18)	C1–C2	1.380(3)
N10B-C11	1.4663(18)	C3'-C2'	1.480(3)
N4B-C13B	1.4601(18)	С9–С8	1.364(3)
N4B–C4A	1.3733(19)	C3–C2	1.373(3)
N4B-C5	1.443(2)		

Table 3. Bond Angles for compound $\mathbf{3}$,°

Angle		Angle	
C6–N5A–C13C	111.64(11)	N4B-C13B-C13C	100.98(11)
C5-N5A-C13C	103.73(11)	N5A-C6-C6A	108.98(12)

C5-N5A-C6	115.02(12)	N4B-C4A-C14A	118.86(15)
N10B-C10A-C6A	119.96(14)	N4BC4AC4	121.49(16)
N10B-C10A-C10	122.12(14)	C4–C4A–C14A	119.63(16)
C10-C10A-C6A	117.88(16)	N13A-C14-C14A	111.04(13)
C11-N12-C13	117.66(13)	C4A-C14A-C14	118.87(15)
C1'-N12-C13	117.45(13)	C1C14AC4A	118.73(17)
C1'-N12-C11	116.80(14)	C1-C14A-C14	122.40(17)
C13B-N13A-C14	109.25(12)	N12-C13-N13A	116.27(12)
C13B-N13A-C13	109.26(11)	N12-C11-N10B	115.95(12)
C14-N13A-C13	107.67(12)	C3–C4–C4A	120.24(19)
C10A-N10B-C13C	118.28(12)	C9-C10-C10A	120.71(17)
C10A-N10B-C11	122.16(12)	N4B-C5-N5A	101.93(11)
C13C-N10B-C11	117.94(12)	N12-C1'-C3'	117.72(14)
C4A-N4B-C13B	121.96(13)	N12-C1'-C2'	117.13(14)
C4A-N4B-C5	123.03(13)	C3'C1'C2'	59.60(11)
C5-N4B-C13B	110.68(12)	C8-C7-C6A	121.82(17)
N5A-C13C-C13B	101.26(11)	C14AC1C2	121.4(2)
N10B-C13C-N5A	109.36(11)	C2'-C3'-C1'	60.48(11)
N10B-C13C-C13B	116.90(12)	C8–C9–C10	121.28(18)
C10A-C6A-C6	120.55(15)	C3'-C2'-C1'	59.92(11)
C7-C6A-C10A	119.44(15)	С9–С8–С7	118.68(19)
C7-C6A-C6	119.97(14)	C2–C3–C4	120.22(19)
N13A-C13B-N4B	111.40(12)	C3–C2–C1	119.75(19)
N13A-C13B-C13C	114.19(12)		

Table 4. Interaction Energies $[E_{int}]$ for the Main Hyperconjugative Interactions in compound **3**.

Interaction	$E_{\rm int}$, kcal/mol	Interaction	$E_{\rm int}$, kcal/mol
$LP(N^{12}) \rightarrow \sigma^*(C^{11}-N^{10b})$	15.60	$LP(N^{12}) \rightarrow \sigma^*(C^{13}-N^{13a})$	14.49
$LP(N^{10b}) \rightarrow \sigma^*(C^{11}-N^{12})$	3.76	$LP(N^{13a}) \rightarrow \sigma^*(C^{13}-N^{12})$	1.18
$LP(N^{10b}) \rightarrow \sigma^{*}(C^{10a}-C^{10})$	41.62	$LP(N^{4b}) \rightarrow \sigma^*(C^{4a}-C^{14a})$	38.47
$LP(N^{10b}) \rightarrow \sigma^*(N^{5a}-C^{13c})$	2.94	$LP(N^{4b}) \rightarrow \sigma^*(N^{13a}-C^{13b})$	4.52
$LP(N^{13a}) \rightarrow \sigma^*(N^{4b}-C^{13b})$	1.02	$LP(N^{5a}) \rightarrow \sigma^*(C^{13c}-N^{10b})$	2.49
$LP(N^{5a}) \rightarrow \sigma^*(C^{13c}-H^{13c})$	6.06	$LP(N^{5a}) \rightarrow \sigma^*(C^5-H^{5b})$	5.96
$LP(N^{5a}) \rightarrow \sigma^*(C^5-H^{5a})$	2.15		

Table 5. The Some of Geometric parameters (Å, °) for compound $\mathbf{3}$.

N ^{4b} -C ^{4a}	1.373 Å	$N^{13a}-C^{14}$	1.469 Å	$N^{5a}-C^{5}$	1.444 Å	$N^{10b}-C^{13c}$	1.442 Å
N^{4b} – C^5	1.444 Å	$N^{13a}-C^{13}$	1.471 Å	N ^{5a} –C ⁶	1.449 Å	N ^{10b} –C ¹¹	1.466 Å
N ^{4b} –C ^{13b}	1.460 Å	N ¹² –C ¹³	1.429 Å	N ^{5a} -C ^{13c}	1.454 Å	N ¹² –C ¹¹	1.427 Å
N ^{13a} –C ^{13b}	1.453 Å	N ¹² –C ^{1′}	1.422 Å	N ^{10b} –C ^{10a}	1.386 Å	$\sum \angle N12$	351.9°
∑∠N4b	355.65°	∑∠N5a	330.39°	∑∠N13a	326.19°	∑∠N10b	358.38°

Bond	$\rho(r)$, e/au ³	$-\nabla^2 \rho(r)$, e/au ⁵	3	Bond	$\rho(r)$, e/au ³	$-\nabla^2 \rho(r)$, e/au ⁵	3
C^1-C^2	0.3180	0.8377	0.5006	C ¹¹ –N ¹²	0.2906	0.9783	0.0254
C^2-C^3	0.3230	1.0861	0.0382	N ¹² –C ¹³	0.2884	0.9616	0.0135
$C^{3}-C^{4}$	0.3220	0.8619	0.3018	C ¹³ –N ^{13a}	0.2717	0.8315	0.0571
C^4-C^{4a}	0.3109	0.9916	0.0531	$N^{13a}-C^{14}$	0.2715	0.8148	0.0207
C^{4a} – N^{4b}	0.3126	1.1312	0.0189	$C^{14}-C^{14a}$	0.2672	0.6907	0.0239
N ^{4b} –C ⁵	0.2794	0.8903	0.0426	C^{14a} – C^1	0.3211	1.0485	0.0421
C ⁵ –N ^{5a}	0.2896	0.9342	0.0449	N ^{10b} –C ^{13c}	0.2814	0.8719	0.0378
N ^{5a} –C ⁶	0.2784	0.8861	0.0175	C ^{13b} –C ^{13c}	0.2664	0.6944	0.0072
C ⁶ –C ^{6a}	0.2660	0.6865	0.0243	N ^{13a} –C ^{13b}	0.2853	0.8719	0.0494
$C^{6a}-C^7$	0.3166	0.8053	0.5120	N ^{5a} -C ^{13c}	0.2878	0.8762	0.0476
C ⁷ –C ⁸	0.3207	1.0683	0.0376	N ^{4b} –C ^{13b}	0.2751	0.8053	0.0424
C ⁸ –C ⁹	0.3283	0.9029	0.5121	$C^{4a} - C^{14a}$	0.3151	0.7847	0.5546
C ⁹ –C ¹⁰	0.3190	1.0495	0.0430	N ¹² –C ^{1′}	0.2897	0.9626	0.0342
$C^{10}-C^{10a}$	0.3094	0.7781	0.5300	C ¹ ′–C ² ′	0.2635	0.5565	0.1649
$C^{6a} - C^{10a}$	0.3092	0.9603	0.0555	$C^{2'}-C^{3'}$	0.2652	0.6727	0.1373
C ^{10a} –N ^{10b}	0.3062	1.1191	0.0170	C ³ '–C ¹ '	0.2676	0.5828	0.1561
N ^{10b} -C ¹¹	0.2624	0.7927	0.0639				

Table 6. Topological parameters of electron density at the (3, -1) BCPs of compound **3**.

Table 7. Topological parameters of electron density at the (3, -1) bond critical points for intermolecular interactions in crystal of **3**.

Bond	$\rho(r)$, e/au ³	$\nabla^2 \rho(r)$, e/au ⁵	3	E, kcal/mol
C^{11} - H^{11b} N^{4b}	0.0071	0.0242	0.3612	1.47
C ^{13b} –H ^{13b} N1 ^{0b}	0.0093	0.0296	0.0540	2.03
C^{13b} - H^{13b} N^{5a}	0.0058	0.0214	1.6402	1.28
C^{13b} - H^{13b} H^{13b}	0.0047	0.0188	1.5436	0.75
C^{13} - H^{13a} N^{5a}	0.0035	0.0134	0.1917	0.63
$C^{13c}-H^{13c}\pi$	0.0057	0.0155	0.2116	0.75
С ⁶ –Н ^{6b} … <i>π</i>	0.0073	0.0241	2.1849	1.22
C ⁵ –H ^{5b} … <i>π</i>	0.0027	0.0080	0.9858	0.34
$\mathrm{H}^{\mathrm{5b}}\mathrm{H}^{\mathrm{5b}}$	0.0030	0.0094	0.1218	0.41
H ^{6a} H ⁹	0.0078	0.0276	0.0661	1.50
${ m H}^{7}{ m H}^{10}$	0.0019	0.0058	0.0937	0.25