Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information of

High-Efficiency Catalytic Wet Air Oxidation of High Salinity Phenolic Wastewater under Atmosphere Pressure in Molten Salt Hydrates Media

Hongzi Tan[#], Shuai Wang[#], Jinghua Wang, Feng Song, Xiuyu Sun, Rongrong Zhao, Yuan Zhang

and Hongyou Cui *

School of Chemistry & Chemical Engineering, Shandong University of Technology, Zibo, Shandong

255049, P. R. China.

[#] These two authors contributed equally.

*To whom correspondence should be addressed: E-mail: <u>cuihy@sdut.edu.cn</u>

Temperature (°C)	0	10	20	30	40	50	60	70	80	90	100
NaCl solubility (g/100 mL H ₂ O)	35.70	35.80	36.00	36.30	36.60	37.00	37.30	37.80	38.40	39.00	39.80
NaCl concentration (mol·L ⁻¹)	6.10	6.12	6.15	6.21	6.26	6.32	6.38	6.46	6.56	6.67	6.80
K _{sp} of NaCl	37.24	37.45	37.87	38.50	39.14	40.00	40.65	41.75	43.09	44.44	46.29
CaCl ₂ solubility (g/100 mL H ₂ O)	59.50	64.70	74.50	100.00	128.00	132.00	137.00	143.00	147.00	154.00	159.00
CaCl ₂ concentration (mol·L ⁻¹)	5.36	5.83	6.71	9.01	11.53	11.89	12.34	12.88	13.24	13.87	14.32
$K_{\rm sp}$ of CaCl ₂	616.09	792.14	1209.37	2924.77	6133.68	6726.87	7520.60	8552.62	9290.58	10682.02	11756.62
In the mixed CaCl ₂ -NaCl solution											
Maximum concentration of CaCl2 (mol·L ⁻¹)	4.37	4.89	5.86	8.34	10.99	11.35	11.81	12.36	12.72	13.36	13.80
Maximum concentration of NaCl (mol·L-1)	3.14	2.94	2.64	2.06	1.66	1.64	1.61	1.59	1.59	1.57	1.59
CaCl ₂ ion product	616.09	792.13	1209.36	2924.74	6133.59	6726.77	7520.55	8552.55	9290.45	10681.91	11756.51
Ratio of ion product to K_{sp} of CaCl ₂	≤1	≤1	≤1	≤1	≤1	≤1	≤1	≤1	≤1	≤1	≤1
Desalination efficiency (%)	48.61	51.91	57.15	66.87	73.52	74.02	74.73	75.44	75.71	76.43	76.62

Table S1. The theoretical desalination efficiency of NaCl with the introduction of anhydrous CaCl₂.

Theoretical maximum desalination efficiency of NaCl at 100 °C

$$C_{NaCl, saturation} = 6.80 \text{ mol}\cdot L^{-1}, C_{CaCl2, saturation} = 14.32 \text{ mol}\cdot L^{-1}$$

 $K_{sp, NaCl} = [Na^+] \times [Cl^-] = 46.29, K_{sp, CaCl2} = [Ca^{2+}] \times [Cl^-]^2 = 11756.62$

When anhydrous CaCl₂ is introduced into a saturated NaCl solution, the solubility of NaCl in the mixed solution would decline owing to the common-ion effect, and the residual NaCl concentration could be calculated based on the amount of CaCl₂ added. Before ion product of CaCl₂ reaches up to the maximum ($K_{sp, CaCl2}$), the introduced CaCl₂ could dissolve completely. As the ion product of NaCl ($K_{sp, NaCl}$) is smaller than that of CaCl₂ , part of the NaCl will be salted out so that the ion product of dissolved NaCl equals to $K_{sp, NaCl}$. Based on this assumption, the maximum desalination efficiency of NaCl can be calculated. By calculation, the maximum CaCl₂ concentration was about 13.80 mol·L⁻¹, and the residual NaCl concentration was 1.59 mol·L⁻¹, which is corresponding to a maximum desalination efficiency of 76.62% of NaCl. The detailed calculation is shown as follows.

Assuming that the residual NaCl concentration is x mol·L⁻¹ when the maximum Ca^{2+} concentration reaches to 13.80 mol·L⁻¹, then the following relation remains at equilibrium state at 100°C.

NaCl(s)
$$\rightarrow$$
 Na⁺ + Cl⁻
x (x+2×13.80)
x×(x+2×13.80)=46.29 Eq. (1)

where 46.29 is the $K_{sp, NaCl}$ at 100°C.

It turns out from Eq. (1) that x=1.59 mol·L⁻¹, and the desalination efficiency of NaCl is calculated as 76.62% [(6.80-1.59)/6.80×100%=76.62%]. Therefore, the theoretical maximum desalination efficiency of NaCl at 100 $^{\circ}$ C is 76.62%.

Experimental verification of maximum desalination efficiency of NaCl at different temperature

In order to verify the maximum desalination efficiency, anhydrous CaCl₂ was introduced into the saturated NaCl solution at different temperature to salt out the dissolved NaCl (Table S2). Taking the desalination process at 100 °C as an example, a saturated NaCl solution was firstly prepared by dissolving 39.8 g NaCl into 100 mL H₂O. Then, slightly excessive anhydrous CaCl₂ was added. With the introduction of CaCl₂, a portion of dissolved NaCl was salted out gradually. After centrifuge, the salted-out NaCl as well as the undissolved CaCl₂ was collected , dried and weighted (about 31.47 g). Then, taking the mixture into a conical flask, sufficient water was added to completely dissolve the mixed salts of NaCl and CaCl₂. To precipitate the Ca²⁺, Na₂CO₃ was added converting CaCl₂ to CaCO₃. The resultant CaCO₃ precipitate was collected by filtration and drying to constant weight (about 1.69 g). By this way, the mass of salted-out NaCl was calculated by difference method (29.59 g). Therefore, the maximum desalination efficiency of NaCl at 100 °C was determined as 74.35%, which is in good agreement with the theoretical result (76.62%).

Temperature (°C)	0	10	20	30	40	50	60	70	80	90	100
Volume of H ₂ O (mL)	100	100	100	100	100	100	100	100	3100	100	100
Introduced NaCl (g)	35.70	35.80	36.00	36.30	36.60	37.00	37.30	37.80	38.40	39.00	39.80
Introduced CaCl ₂ (g)	59.50	64.70	74.50	100.00	128.00	132.00	137.00	143.00	147.00	154.00	159.00
Mixture precipitation (g)	14.16	17.87	18.92	25.64	27.98	29.37	26.57	29.84	29.56	30.19	31.47
Mixture precipitation was dissolved again, and Na ₂ CO ₃ was introduced until no more CaCO ₃ precipitation formed.											
CaCO ₃ precipitation (g)	0.37	1.34	1.91	2.45	2.91	2.51	1.47	1.88	1.49	1.59	1.69
Undissolved CaCl ₂ (g)	0.41	1.49	2.12	2.72	3.23	2.79	1.63	2.09	1.65	1.76	1.88
Salted-out NaCl (g)	13.75	16.38	16.80	22.92	24.75	26.58	24.94	27.75	27.91	28.43	29.59
Desalination efficiency (%)	38.51	45.76	46.67	63.14	67.62	71.85	69.86	73.43	72.67	72.89	74.35

Table S2. The measured desalination efficiency of NaCl with the introduction of anhydrous $CaCl_2$.

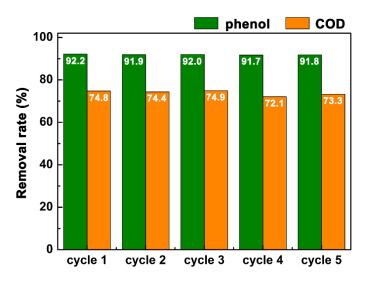


Figure S1. The removal rates of phenol and COD under the catalysis of CeCl₃ catalyst in the recycle runs after reacting at 150 °C for 3 h in CaCl₂·3H₂O medium. Reaction conditions: 0.01 mol of CeCl₃ catalyst, 1.5 mol of CaCl₂ and 80 mL of phenol solution $(30 \text{ g} \cdot \text{L}^{-1})$

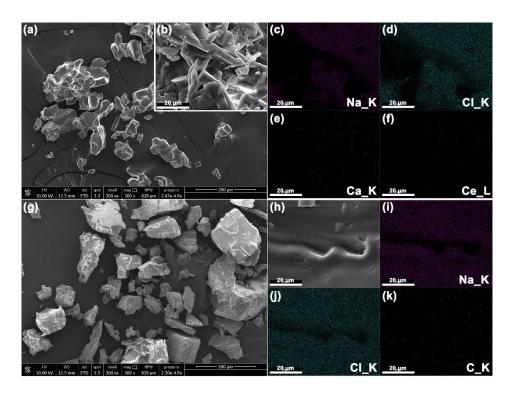


Figure S2. The SEM-Mapping images of $(a \sim f)$ the NaCl obtained from direct evaporation of the wastewater to dry and $(g \sim k)$ the NaCl salted-out from the wastewater owing to common-ion effect in continuous operation.