Supplementary Information

Superior UV- light photocatalysts of Nano-Crystalline (Ni or Co) FeWO₄: Structure, Optical Characterization Synthesized by A Microemulsion Method

Sabah. M. Abdelbasir,*# Ahmed Mourtada Elseman,*#, Farid A. Harraz, Yasser MZ Ahmed, Said M. El-Sheikh*, and Mohamed M. Rashad

Central Metallurgical Research & Development Institute (CMRDI), P.O.Box 87 Helwan, 11421, Cairo, Egypt.

*Corresponding author. (S. M. Abdelbasir) Email: sfoda20@hotmail.com (A. M. Elseman) Email: amourtada@cmrdi.sci.eg; and (S. M. El-Sheikh) Email: selsheikh2001@gmail.com

[#]These authors equally contributed to the work.

Fig. S1. Flow chart for the production of FeWO₄, CoFeWO₄, and NiFeWO₄ by microemulsion method.

Fig. S2. VSM of FeWO₄, CoFeWO₄ and NiFeWO₄ thin film.

Fig. S3. MB degradation by generated OH and O_2^- radicals.

Fig. S4. Recycling experiment of $FeWO_4$, $CoFeWO_4$, and $NiFeWO_4$ samples on the photodegradation MB.

propurou.							
Compound	Assigned as	Metal ion salt (mole)/ Isooctane/water/AO T	Mixed Reacta nt	Molar ratio	Assigned as	Heat treatment temperature (°C)	Heat treatment Time (hr)
$(Na_2WO_4 \cdot 2H_2O)$	Reactant A	0.1/25/25/0.1	A:B	1:1.2	FeWO ₄	600/2°C/min	6
$(Fe(NO_3)_2)$	Reactant B	0.1 or 0.12/25/25/0.1	A:B	1:1	FeWO ₄	600/2°C/min	6
$(Co(NO_3)_2 \cdot 6H_2O)$	Reactant C	0.1:0.1/25/25/0.1	C:A:B	0.5:0.5:1	CoFeWO 4	600/2°C/min	6
$(Ni(NO_3)_2 \cdot 6H_2O)$	Reactant D	0.1/25/25/0.1	D:A:B	0.5:0.5:1	NiFeWO 4	600/2°C/min	6

Table S1. Molar ratios of chemicals mandatory for the different metal tungstate precursors to be prepared.

Table S2. Comparison of performance characteristics of MWO_4 photocatalysts for the degradation of different pollutants.

Photocatalyst	Target pollutant	Light illumination	Photocatalytic activity	degradation time	Reference
NiFeWO ₄	MB	UV	100%	60 min	Current work
NiWO ₄	MO dye	UV	87%	100 min	1
ZnWO ₄	para-aminobenzoic acid	UV-A	100 %	160 min	2
ZnWO ₄	MB Rh-B	UV	100%	60 min 25 min	3
BaWO4	Methyl thioninium chloride (MTC) dye	UV	75% at pH=10	30 min	4
CuWO ₄	MO	UV	75%	90 min	5
$Pr_2(WO_4)_3$	MB	UV	99.9%	60 min	6
CuWO ₄ /ZnO	MB	sunlight	98.9	120 min	7

Supplementary references

- 1. S. M. Pourmortazavi, M. Rahimi-Nasrabadi, M. S. Karimi and S. Mirsadeghi, *New J. Chem.*, 2018, **42**, 19934-19944.
- 2. V. Faka, S. Tsoumachidou, M. Moschogiannaki, G. Kiriakidis, I. Poulios and V. Binas, *Journal of Photochemistry and Photobiology A: Chemistry*, **406**, 113002.
- 3. K. Garadkar, L. Ghule, K. Sapnar and S. Dhole, *Mater. Res. Bull.*, 2013, 48, 1105-1109.
- 4. S. M. AlShehri, J. Ahmed, T. Ahamad, B. M. Almaswari and A. Khan, *J. Nanopart. Res.*, 2017, **19**, 289.
- 5. S. M. Hosseinpour-Mashkani and A. Sobhani-Nasab, *Journal of Materials Science: Materials in Electronics*, 2016, **27**, 7548-7553.
- 6. S. M. Pourmortazavi, M. Rahimi-Nasrabadi, M. R. Ganjali, M. S. Karimi, P. Norouzi and F. Faridbod, *Open Chemistry*, 2017, **15**, 129-138.
- 7. C. Chen, W. Bi, Z. Xia, W. Yuan and L. Li, ACS Omega, 2020.