Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

## **Electronic Supplementary Information**

## Synthesis, characterization and third order nonlinear optical properties

## of *trans*-A<sub>2</sub>B-tpye cobalt corroles

Guifen Lu,\* Peng Zhang, Yuanyuan Fang, Yongjie Gao, Qikang Hu

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China

**Materials.** Reagents and solvents (Sinopharm or Aldrich) were of the highest grade available and were used without further purification, except for CH<sub>2</sub>Cl<sub>2</sub>, which was distilled under reduced pressure prior to use from P<sub>2</sub>O<sub>5</sub>. Tetra-n-butylammonium perchlorate (TBAP), as supporting electrolyte, was recrystallized from ethyl alcohol, and dried under vacuum at 40 °C for at least 1 week prior to use.

**Physical Measurements.** IR spectra (KBr pellets) were recorded on AVATAR-370 spectrometer. <sup>1</sup>HNMR spectra were recorded in a CDCl<sub>3</sub> solution at 400 MHz using a Bruker Advance 400 spectrometer at 25 °C. Chemical shifts (ppm) were determined with TMS as the internal reference. MALDI-TOF mass spectra were carried out on a Bruker BIFLEX III ultrahigh resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer with α-cyano-4-hydroxycinnamic acid as matrix. The fluorescence spectrum was recorded on a CaryEclipse fluoresence spectrophotometer.

**Electrochemistry.** Cyclic voltammetry was carried out at 298 K using a CHI-730C Electrochemical Workstation. A homemade three-electrode cell was used for cyclic voltammetric measurements and consisted of a glassy carbon working electrode, a platinum counter electrode and a homemade saturated calomel reference electrode (SCE). The SCE was separated from the bulk of the solution by a fritted glass bridge of low porosity which contained the solvent/supporting electrolyte mixture. All potentials are referenced to the SCE. High purity N<sub>2</sub> was used to deoxygenate the solution and a stream of nitrogen gas was kept over the solution during each electrochemical experiment.

S2



Scheme S1. Synthetic route for compounds [Cor(*p*-RPh)<sub>2</sub>(*p*-NO<sub>2</sub>Ph)]Co(PPh<sub>3</sub>) 1-5.

## -8.80 (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.55) (8.



**Fig. S1.** <sup>1</sup>H NMR spectrum of  $[Cor(p-CNPh)_2(p-NO_2Ph)]Co(PPh_3)$  (**1**) (\* 7.26 ppm is the solvent peak of CDCl<sub>3</sub>, 1.56 ppm is the peak of H<sub>2</sub>O, 0.88 and 1.26 ppm are solvent peaks from *n*-hexane).



**Fig. S2.** <sup>1</sup>H NMR spectrum of  $[Cor(p-FPh)_2(p-NO_2Ph)]Co(PPh_3)$  (**2**) (\* 7.26 ppm is the solvent peak of CDCl<sub>3</sub>, 1.56 ppm is the peak of H<sub>2</sub>O, 0.88 and 1.26 ppm are solvent peaks from *n*-hexane).

8.8.7
8.8.6.7
8.8.4.8
8.8.4.8
8.8.4.8
8.8.4.8
8.8.4.8
8.8.4.8
8.8.4.8
8.8.4.8
8.8.4.8
8.8.4.8
8.8.4.8
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
8.8.4.4
<li



**Fig. S3.** <sup>1</sup>H NMR spectrum of  $[Cor(p-CH_3Ph)_2(p-NO_2Ph)]Co(PPh_3)$  (**3**) (\* 7.26 ppm is the solvent peak of CDCl<sub>3</sub>, 1.56 ppm is the peak of H<sub>2</sub>O, 0.88 and 1.26 ppm are solvent peaks from *n*-hexane).



**Fig. S4.** <sup>1</sup>H NMR spectrum of  $[Cor(p-C(CH_3)_3Ph)_2(p-NO_2Ph)]Co(PPh_3)$  (**4**) ( \* 7.26 ppm is the solvent peak of CDCl<sub>3</sub>, 0.88 and 1.26 ppm are solvent peaks from *n*-hexane).



**Fig. S5.** <sup>1</sup>H NMR spectrum of  $[Cor(p-PhCH_2OPh)_2(p-NO_2Ph)]Co(PPh_3)$  (**5**) (\* 7.26 ppm is the solvent peak of CDCl<sub>3</sub>, 1.56 ppm is the peak of H<sub>2</sub>O, 0.88 and 1.26 ppm are solvent peaks from *n*-hexane).



**Fig. S6.** MALDI-TOF mass spectrum of  $[Cor(p-CNPh)_2(p-NO_2Ph)]Co(PPh_3)$  (**1**). The inset shows experimental (a) and simulated isotopic pattern (b) for the molecular ion of compound **1**.



**Fig. S7.** MALDI-TOF mass spectrum of  $[Cor(p-FPh)_2(p-NO_2Ph)]Co(PPh_3)$  (**2**). The inset shows experimental (a) and simulated isotopic pattern (b) for the molecular ion of compound **2**.



**Fig. S8.** MALDI-TOF mass spectrum of  $[Cor(p-CH_3Ph)_2(p-NO_2Ph)]Co(PPh_3)$  (**3**). The inset shows experimental (a) and simulated isotopic pattern (b) for the molecular ion of compound **3**.



**Fig. S9.** MALDI-TOF mass spectrum of  $[Cor(p-C(CH_3)_3Ph)_2(p-NO_2Ph)]Co(PPh_3)$  (**4**). The inset shows experimental (a) and simulated isotopic pattern (b) for the molecular ion of compound **4**.



**Fig. S10.** MALDI-TOF mass spectrum of  $[Cor(p-PhCH_2OPh)_2(p-NO_2Ph)]Co(PPh_3)$  (**5**). The inset shows experimental (a) and simulated isotopic pattern (b) for the molecular ion of compound **5**.



**Fig. S11.** Electronic absorption spectra of compounds [Cor(*p*-RPh)<sub>2</sub>(*p*-NO<sub>2</sub>Ph)]Co(PPh<sub>3</sub>) (**1-5**) in DMF.



**Fig. S12.** Electronic absorption spectra of compounds [Cor(*p*-RPh)<sub>2</sub>(*p*-NO<sub>2</sub>Ph)]Co(PPh<sub>3</sub>) (**1-5**) in DMA.

| Solvent    | R                                | $\lambda_{max}$ / [nm, $\epsilon$ x 10 <sup>-5</sup> (L mol <sup>-1</sup> cm <sup>-1</sup> )] |              |              |  |  |  |
|------------|----------------------------------|-----------------------------------------------------------------------------------------------|--------------|--------------|--|--|--|
|            | CN                               | 392 (1.0715)                                                                                  | 568 (0.2258) |              |  |  |  |
| $CH_2Cl_2$ | F                                | 386 (1.4355)                                                                                  | 553 (0.2792) |              |  |  |  |
|            | CH₃                              | 391 (0.9249)                                                                                  | 560 (0.1414) |              |  |  |  |
|            | C(CH₃)₃                          | 393 (0.8006)                                                                                  | 556 (0.1534) |              |  |  |  |
|            | PhCH₂O                           | 403 (1.7869)                                                                                  | 569 (0.2604) |              |  |  |  |
| DMF        | CN                               | 396 (0.5440)                                                                                  | 563 (0.1398) | 628 (0.0720) |  |  |  |
|            | F                                | 387 (0.4811)                                                                                  | 548 (0.0885) | 620 (0.0297) |  |  |  |
|            | CH₃                              | 392 (0.8067)                                                                                  | 548 (0.1344) | 620 (0.0271) |  |  |  |
|            | C(CH <sub>3</sub> ) <sub>3</sub> | 390 (1.0095)                                                                                  | 556 (0.1647) | 623 (0.0309) |  |  |  |
|            | PhCH₂O                           | 401 (0.8260)                                                                                  | 561 (0.1305) | 624 (0.0229) |  |  |  |
| DMA        | CN                               | 392 (0.6253)                                                                                  | 562 (0.1527) |              |  |  |  |
|            | F                                | 385 (0.5651)                                                                                  | 556 (0.1094) |              |  |  |  |
|            | CH₃                              | 391 (0.5214)                                                                                  | 559 (0.1003) |              |  |  |  |
|            | C(CH <sub>3</sub> ) <sub>3</sub> | 392 (0.6250)                                                                                  | 559 (0.1215) |              |  |  |  |
|            | PhCH₂O                           | 401 (0.6552)                                                                                  | 561 (0.1243) |              |  |  |  |

**Table S1.** Electronic absorption data for  $[Cor(p-RPh)_2(p-NO_2Ph)]Co(PPh_3)$  (1-5) in CH<sub>2</sub>Cl<sub>2</sub>, DMF and DMA.

| CN    | F     | CH₃   | C(CH₃)₃ | PhCH <sub>2</sub> O | Assignment                                                                          |
|-------|-------|-------|---------|---------------------|-------------------------------------------------------------------------------------|
| 413w  | 418w  |       |         |                     | C-C-C out-of-plane wag of phenyl                                                    |
| 458w  | 459w  |       |         | 457w                | Coupling the Pyrrole in plane bending and C-C-C out-of-plane wag of phenyl          |
| 499w  | 499w  | 499w  | 499w    | 499w                | Pyrrole in-plane rotation                                                           |
| 521s  | 522s  | 519s  | 521s    | 520s                | Pyrrole in plane bending                                                            |
| 576w  | 576w  | 576w  | 585w    | 575w                | C(10- <i>meso</i> )-C(Pyrrole) out-of-plane bending                                 |
| 618w  | 616w  | 616w  | 618w    | 618w                | C-C-C in plane deformation of phenyl groups                                         |
| 695s  | 694s  | 693s  | 695s    | 695s                | C-H out-of-plane wag of the Pyrrole                                                 |
| 714s  | 721s  | 719s  | 716s    | 714s                | C-H out-of-plane wag of the Pyrrole                                                 |
| 747m  | 747m  | 747m  | 742m    | 746m                | C-H out-of-plane wag of the phenyl groups                                           |
|       |       |       | 749a    |                     | C-H out-of-plane wag of the phenyl groups                                           |
| 786m  | 786m  | 784m  | 785m    | 785m                | Pyrrole in-plane deformation                                                        |
|       |       | 807m  |         |                     | Pyrrole in-plane bending                                                            |
| 820s  | 820s  | 820s  | 821s    | 822s                | Pyrrole in-plane bending                                                            |
| 846w  | 845w  | 845m  | 845m    | 845m                | Coupling of Pyrrole stretching and the out of plane C-H wag                         |
| 881w  | 880w  | 880w  | 881w    | 880w                | C-H in-plane bending of the Pyrrole                                                 |
| 985m  | 986m  | 985m  | 985m    | 985m                | Coupling the breathing vibration of the phenyl groups and the corrole skeleton      |
| 1013s | 1016s | 1017s | 1018s   | 1015s               | Coupling C-H in plane bending of phenyl groups and porrole breathing                |
| 1053m | 105s  | 1052m | 1052m   | 1050m               | C-H bending of the Pyrrole                                                          |
| 1088w | 1088w | 1088w | 1088w   | 1088w               | C-H in plane bending of the phenyl groups                                           |
| 1109w | 1109w | 1109w | 1109w   | 1109w               | Phenyl groups in plane breathing                                                    |
| 1190w | 1160s | 1184w | 1190w   |                     | C-H bending of the Pyrrole                                                          |
|       |       |       |         | 1172s               | Ar-O-C stretching (sym)                                                             |
|       | 1221s |       |         |                     | C-F stretching                                                                      |
| 1226w | 1229s | 1226w | 1226w   | 1224w               | Coupling of the C(10-meso)-C(phenyl groups) stretching and Pyrrole in plane bending |

**Table S2.** Characteristic IR bands (cm<sup>-1</sup>) of corrole for [Cor(*p*-RPh)<sub>2</sub>(*p*-NO<sub>2</sub>Ph)]Co(PPh<sub>3</sub>) (**1-5**) with 2 cm<sup>-1</sup> resolution.

| 1242s Ar-O-C stretching ( <i>asym</i> )<br>1319w 1316m 1318w 1319w 1316w Pyrrole stretching<br>1345vs 1343vs 1341vs 1340vs 1342s Coupling the stretch of pyrrole, C-C stretching and symmetric N=O stretching |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1319w 1316m 1318w 1319w 1316w Pyrrole stretching<br>1345vs 1343vs 1341vs 1340vs 1342s Coupling the stretch of pyrrole, C-C stretching and symmetric N=O stretching                                            |     |
| 1345vs 1343vs 1341vs 1340vs 1342s Coupling the stretch of pyrrole, C-C stretching and symmetric N=O stretching                                                                                                |     |
|                                                                                                                                                                                                               |     |
| 1435w 1435m 1435m 1432m 1433m C-C stretching of the Pyrrole                                                                                                                                                   |     |
| 1507w 1507w 1507s 1506w 1506vs Coupling of Pyrrole stretching and asymmetric N=O stretching                                                                                                                   |     |
| 1521s 1520s 1521s 1520s 1517s Coupling of the C(5,15- <i>meso</i> )-C(Pyrrole) stretching and Pyrriole in plane bending                                                                                       | ing |
| 1540w 1540w 1540w 1542w Coupling of Benzene stretching and asymmetric N=O stretching                                                                                                                          |     |
| 1600s 1593m 1593m 1596m 1592m Benzene stretching                                                                                                                                                              |     |
| 1601m Benzene stretching                                                                                                                                                                                      |     |
| 2225s C=N stretching                                                                                                                                                                                          |     |
| 2853m 2850m C-H stretching (-CH <sub>3</sub> - <i>, sym</i> )                                                                                                                                                 |     |
| 2883br C-H stretching (-CH <sub>2</sub> -, <i>sym</i> )                                                                                                                                                       |     |
| 2920s 2921s C-H stretching (-CH <sub>3</sub> -, <i>asym</i> )                                                                                                                                                 |     |
| 2953a 2959s C-H stretching (-CH <sub>3</sub> -, <i>asym</i> )                                                                                                                                                 |     |
| 2970s C-H stretching (-CH <sub>2</sub> -, asym)                                                                                                                                                               |     |
| 3062w 3058w 3054w 3058w 3060w aromatic C-H stretching                                                                                                                                                         |     |

<sup>a</sup> Shulder band.

| Compound | R                   | Oxidation    |              |                 | R  | Readuction |                                              |                           |
|----------|---------------------|--------------|--------------|-----------------|----|------------|----------------------------------------------|---------------------------|
|          |                     | $E_{1/2}(2)$ | $E_{1/2}(1)$ | <i>∆E</i> (2-1) | Ε  | p(1)       | <i>E</i> <sub>1/2</sub> (NO <sub>2</sub> Ph) | <i>E</i> <sub>p</sub> (2) |
| 1        | CN                  | 1.04         | 0.65         | 0.39            | -( | 0.53       | -1.06                                        | -1.53                     |
| 2        | F                   | 0.95         | 0.57         | 0.38            | -( | 0.66       | -1.13                                        | -1.64                     |
| 3        | CH₃                 | 0.93         | 0.53         | 0.4             | -( | 0.70       | -1.15                                        | -1.69                     |
| 4        | C(CH₃)₃             | 0.91         | 0.53         | 0.38            | -( | ).73       | -1.14                                        | -1.70                     |
| 5        | PhCH <sub>2</sub> O | 0.87         | 0.52         | 0.35            | -( | ).72       | -1.14                                        | -1.69                     |

**Table S3.** Half-wave and peak potentials (V vs SCE) for the oxidations and reductions of  $[Cor(p-RPh)_2(p-NO_2Ph)]Co(PPh_3)$  (**1-5**) in CH<sub>2</sub>Cl<sub>2</sub> containing 0.1 M TBAP.

Scan rate 100 mV/s.