Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting information

A series of porous 3D inorganic organic hybrid framework crystalline materials based on 5-Aminoisophthalic Acid for

photocatalytic degradation of Crystal Violet

Yu Xin^a, Jun Zhou^a, Yong Heng Xing^a, Feng Ying Bai^{a*}, Li Xian Sun^{b*}

^aCollege of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, P. R. China

^bGuangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, P. R. China

Table S1Crystallographic data for complexes 1-3*						
Complexes	1	2	3			
Formula	$C_{13}H_{13}N_2O_6Zn$	$C_{13}H_9N_2O_4Cu$	$C_{13}H_{13}N_2O_6Ni_{0.25}Zn_{0.75}$			
$M(g \cdot mol^{-1})$	358.62	320.76	351.96			
Crystal system	Monoclinic	Monoclinic	Monoclinic			
Space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$			
a (Å)	12.3235(9)	12.5486(14)	12.4092(9)			
<i>b</i> (Å)	7.6722(5)	7.6374(9)	7.6700(5)			
<i>c</i> (Å)	16.1144(12)	16.0778(18)	16.0912(12)			
α (°)	90	90	90			
β (°)	108.5810(10)	109.037(2)	108.6420(10)			
γ (°)	90	90	90			
$V(Å^3)$	1444.17(18)	1456.6(3)	1451.18(18)			
Ζ	4	4	4			
$D_c(\mathbf{g}\cdot\mathbf{cm}^{-3})$	1.649	1.463	1.611			
F(000)	732	648	724			
M (Mo-K α) (mm ⁻¹)	1.732	1.512	1.368			
θ (°)	1.743-29.599	1.717-24.999	1.732-24.994			
Reflections collected	3642	3955	4864			
Independent reflections(<i>I</i> >2σ(<i>I</i>))	3882	2557	2547			
Parameters	200	181	200			
$\Delta(\rho)(e \text{ Å}^{-3})$	1.322 and -0.874	0.320 and -0.268	2.146 and -0.717			
Goodness of fit	1.114	1.158	1.106			
R^{a}	0.0690(0.0532) ^b	0.0418(0.0373) ^b	0.0611(0.0583) ^b			
wR_2^a	0.1731(0.1856) ^b	0.0831(0.0843) ^b	0.1695(0.1713) ^b			

 $\label{eq:rescaled} \ensuremath{^{a}R=\!\sum \left| \ensuremath{ F_{O}}\ensuremath{^{F_{O}}}\ensuremath{^{F_{O}}}\ensuremath{^{P_{O}}}\ensure$

Complexes	4	5	6	7
Formula	$C_{13}H_{13}N_2O_6Cr$	C ₁₃ H ₁₃ N ₂ O ₆ Co	$C_{13}H_{13}N_2O_6Fe$	C ₁₆ H ₁₆ N ₂ O ₁₀ Mn
$M(g \cdot mol^{-1})$	345.25	354.20	349.10	451.25
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	P2/n
<i>a</i> (Å)	12.5435(9)	12.6083(16)	12.228(3)	7.040(4)
<i>b</i> (Å)	7.6671(6)	7.6426(9)	7.6950(16)	10.055(6)
<i>c</i> (Å)	16.1534(11)	16.1273(19)	16.114(4)	11.499(7)
α (°)	90	90	90	90
β (°)	108.7710(10)	109.076(2)	108.418(4)	95.072(10)
γ (°)	90	90	90	90
$V(Å^3)$	1470.88(19)	1468.7(3)	1438.5(5)	810.8(8)
Ζ	4	4	4	2
$D_c(g \cdot cm^{-3})$	1.559	1.602	1.612	1.848
<i>F</i> (000)	708	728	716	462
<i>M</i> (Mo Kα) (mm ⁻¹)	0.808	1.199	1.199	0.883
θ (°)	1.715-28.105	1.709-24.993	1.755-28.223	2.025-25.242
Reflections collected	3585	4337	1135	945
Independent reflections($l > 2\sigma(l)$)	3504	2555	3487	2008
Parameters	200	197	200	124
$\Delta(\rho)(e \text{ Å}^{-3})$	1.817 and -1.360	3.047 and -1.506	1.177 and0.498	1.021 and 0.694
Goodness of fit	1.079	1.061	1.022	1.044
R^a	0.0966(0.0835) ^b	0.0901(0.0844) ^b	0.1601(0.0730) ^b	0.0966(0.0537) ^b
wR_2^a	0.2395(0.2525) ^b	0.2520(0.2571) ^b	0.2046(0.2562) ^b	0.1209(0.1394) ^b

 Table S2
 Crystallographic data for complexes 4-7*

 $\label{eq:rescaled} \ensuremath{^{*a}R=\sum \left| \ensuremath{ F_O}\xspace - \ensuremath{ F_O}\xspace, wR_2 = \{\sum [w(F_O^2 - F_C^2)^2]/\sum [w(F_O^2)^2]\}^{1/2}; \ensuremath{ [F_O>4\sigma(F_O)]}\xspace. \ensuremath{^{b}Based}\xspace on all data. \ensuremath{^{b}Based}\xspace on all data. \ensuremath{^{b}C}\xspace on all data. \ensuremath{^{b}$

Table S3	The selected bond distances (Å) of	complexes 1-7*
----------	------------------------------------	----------------

	Complex 1						
Zn(1)-N(2)	2.124(3)	Zn(1)-N(1)	2.043(3)				
Zn(1)-O(4) ^{#1}	$Zn(1)-O(4)^{\#1}$ 1.980(3) $Zn(1)-O(2)^{\#2}$						
	Cor	nplex 2					
Cu(1)-N(1)	2.114(3)	Cu(1)-N(1AA)	2.036(3)				
Cu(1)-O(3) ^{#1}	$Cu(1)-O(3)^{\#1}$ 1.977(2)		1.954(2)				
	Complex 3						
Ni(1)-N(1)	2.101(4)	Ni(1)-N(1)	2.044(4)				
Ni(1)-O(2) ^{#1}	1.985(3)	Ni(1)-O(3)#2	1.937(3)				
	Cor	nplex 4					

Cr(1)-N(1)	2.148(5)	Cr(1)-N(1)	2.049(4)				
Cr(1)-O(3)#1	1.946(4)	Cr(1)-O(1) ^{#2}	1.986(4)				
	Con	plex 5					
Co(1)-N(1)	2.113(5)	Co(1)-N(2)	2.041(5)				
Co(1)-O(1) ^{#1}	1.984(4)	Co(1)-O(3) ^{#2}	1.942(5)				
	Complex 6						
Fe(1)-N(1)	2.126(7)	Fe(1)-N(2)	2.038(6)				
Fe(1)-O(1) ^{#1}	1.978(5)	Fe(1)-O(3)#2	1.939(5)				
	Con	nplex 7					
Mn(1)-O(4)#1	2.149(3)	Mn(1)-O(4) ^{#2}	2.149(3)				
Mn(1)-O(1)	2.129(3)	Mn(1)-O(1)#3	2.129(3)				
Mn(1)-O(5)#3	2.269(3)	Mn(1)-O(5)	2.269(3)				

*Symmetry codes:Complex 1: #1, +x, -1+y, +z; #2, +x, 3/2-y, 1/2+z; Complex 2: #1, +x, 1+y, +z; #2, +x, 1/2-y, -1/2+z; Complex 3: #1, +x, -1+y, +z; #2, +x, 3/2-y, 1/2+z; Complex 4: #1, +x, 3/2-y, 1/2+z; #2, +x, 1+y, +z; Complex 5: #1, +x, -1+y, +z; #2, +x, 3/2-y, 1/2+z; Complex 6: #1, +x, 1+y, +z; #2, 2+x, 3/2-y, 1/2+z; Complex 7: #1, 3/2-x, -1+y, 1/2-z; #2,+x, -1+y, +z; #3, 3/2-x, +y, 1/2-z.

Figure S1 IR spectra of ligands and complexes 1-7: (a)Ligand 5-aip; (b)Ligand 4,4'-bipy; (c) Complex 1; (d) Complex 2; (e) Complex 3; (f) Complex 4; (g) Complex 5; (h) Complex 6; (i) Complex 7

Table S4	IR spectra	(cm ⁻¹) of	ligands	5-aip, 4,4	'-bipy	and complexes	1-7
		<hr/>	-				

	5-aip	4,4'-bipy	1	2	3	4	5	6	7
v _{O-H}	3442	3242	3418	3382	3376	3394	3400	3394	3423
$\nu_{\text{N-H}}$	3107	-	3254	3248	3248	3254	3260	3260	3259
$\nu_{Ar\text{-}H}$	3099	3053	3144	3126	3126	3132	3138	3138	3080
v _{asCOO} -	1691	-	1558	1552	1558	1558	1564	1552	1561
ν_{sCOO}	1395	-	1357	1351	1351	1351	1357	1345	1371
$\nu_{C=N}$	-	1679	1667	1667	1673	1671	1667	1661	-
$\nu_{C=C}$	1634, 1469	1600,1418	1613,1473	1619,1442	1613,1479	1613,1430	1625,1425	1619,1485	1641, 1458
ν_{C-C}	1145	1102	1187	1144	1193	1175	1181	1181	1176
$\nu_{\text{C-N}}$	1105	1077	1103	1102	1102	1108	1114	1108	1053
$\nu_{\text{C-O}}$	1035	-	1022	1071	1065	1077	1071	1041	1022
$\delta_{Ar\text{-}H}$	778	797	773	773	767	779	778	779	781

Figure S2 UV-Vis spectra of ligands and complexes 1-7: (a) Ligand 5-aip; (b) Ligand 4,4'-bipy; (c) Complex 1;
(d) Complex 2;(e) Complex 3; (f) Complex 4; (g) Complex 5; (h) Complex 6; (i) Complex 7

Table S5	UV-Vis spectra (nm) of ligand 5-aip, 4,4'-bipy and complexes 1-7						
	LL	.CT	IMCT	MMCT			
	π-π*	n-π*	LIVIC I	MIMIC I			
5-aip	217	298	-	-			
4,4'-bipy	215	290	-	-			
1	265	289	-	-			
2	265	314	412	-			
3	263	323	398	659			
4	265	317	383	592			
5	208	318	331	549			
6	257	312	351	-			
7	216	289	367	503			

Figure S3 TG curves of complexes 1–7 (a) Complex 1; (b) Complex 2;(c) Complex 3; (d) Complex 4; (e) Complex 5; (f) Complex 6; (g) Complex 7

		Table S6	TG analysis	data of compl	exes 1-6		
com	olexes	1	2	3	4	5	6
	T(°C)	30-373	30-356	30-380	30-388	30-344	30-180
The first stage	Cal. value	10.1%	10.1%	10.2%	8.3%	10.1%	8.2%
	Mea. value	10.08%	10.08%	11.5%	9.6%	9.5%	9.7%
TTI 1	T(°C)	373-518	356-520	380-525	388-491	344-530	180-478
The second stage	Cal. value	21.7%	21.5%	22.2%	17.9%	22.2%	17.8%
	Mea. value	20.5%	21.9%	23.9%	18.2%	21.7%	18.7%
The third stage	T(°C)	518-800	520-800	525-800	497-800	530-800	478-800
	Cal. value	37.02%	38.2%	47.3%	38.1%	44.3%	53.6%
	Mea. value	37.88%	37.02%	46.01%	37.6%	45.1%	52.41%

Figure S4 PXRD spectra of complexes 1-7: (a) Complex 1; (b) Complex 2; (c) Complex 3; (d) Complex 4;(e) Complex 5; (f) Complex 6; (g) Complex 7

Figure S5 The crystallinity rate of (a) complex 1 (b) complex 2 (c) complex 3 (d) complex 4

Figure S6 Complex 1: (a) 3D network structure; (b) π - π stacking interaction; (c) pore.

Figure S7 Complex 7: (a) 3D network structure; (b) pore.

Figure S8 Photocatalytic degradation of CV (10 mg/L) with H_2O_2 only

Figure S9 Lifetime of samples (a) 5-aip; (b) 4,4'-bipy ; (c) Complex 1;(d) Complex 2; (e) Complex 3; (f) Complex 4;

Figure S10 Photocatalytic degradation of CV with 5-aip

Figure S11 (a) The IR spectra before and after photocatalytic degradation, (b) The PXRD spectra before and after photocatalytic degradation