Co₃O₄-CuCoO₂ hybrid nanoplates as a low-cost and highly

active catalyst for producing hydrogen from ammonia borane

Yufa Feng,^{+a, b} Jinyun Liao,^{+b} Xiaodong Chen, ^b Qingyu Liao, ^b Huize Wang, ^b Shan Ji,

*c Bruno G. Pollet, d Hao Li, *b and Mingyang He*a

^a Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China.

^b School of chemistry and Materials Engineering, Guangdong Provincial Key Laboratory for Electronic Functional Materials and Devices, Huizhou University, Huizhou 516007, China.

^c College of Biological, Chemical Science and Chemical Engineering, Jiaxing University, Jiaxing, 314001, China.

^d Hydrogen Energy and Sonochemistry Research Group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.

⁺These authors contributed equally to this work.

*Corresponding author.

E-mail address: lihao180@126.com (H. Li); jishan@zjxu.edu.cn (S. Ji); hmy@cczu.edu.cn (M. He)

Supporting information

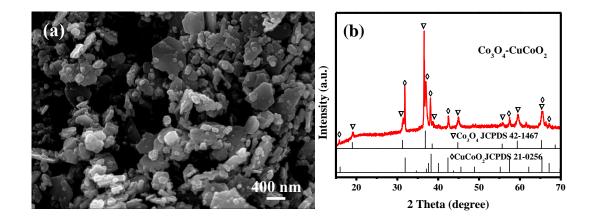


Fig. S1. SEM image (a) and XRD pattern (b) of Co₃O₄-CuCoO₂ synthesized in the absence of SDDS in the synthetic process.

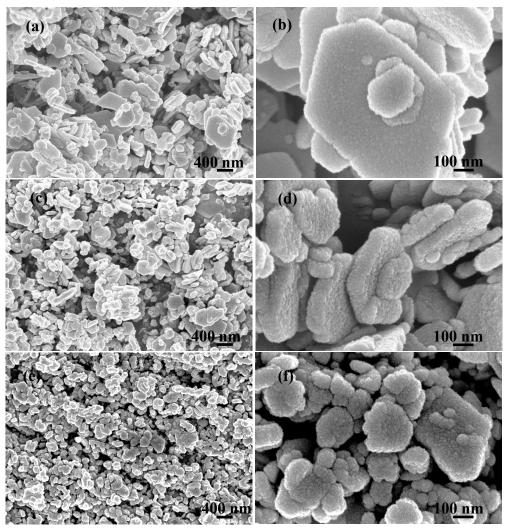


Fig. S2. SEM images of Co_3O_4 -CuCoO₂ with various Cu:Co ratio: 1:10 (a, b), 1:5 (c, d) and 1:2 (e, f).

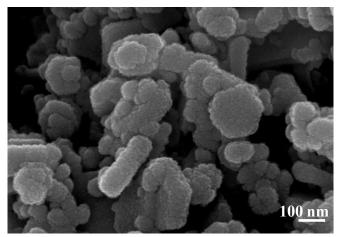


Fig. S3. SEM image of used Co₃O₄-CuCoO₂.

Illustration S1: Calculation of E_a

The E_a value can be calculated by the Arrhenius equation:

$$\ln k = -E_a/(RT) + \ln A$$

in which *k* is the hydrolysis reaction rate constant, *R* is the molar gas constant (8.3145 J K⁻¹ mol⁻¹), *T* is the reaction temperature (K) and *A* is the pre-exponential factor.

As shown in Fig. 9a, the values of k can be determined from the linear portions of the volume of hydrogen vs. time plots.