Dysprosium-doped zinc tungstate nanospheres as highly efficient heterogeneous catalysts in green oxidation of terpenic alcohols with hydrogen peroxide

Daniel Carreira Batalha,^a Kellen Cristina Mesquita Borges,^b Rosana de Fátima Gonçalves,^b Murillo Henrique

de Matos Rodrigues,^b Mário Júnior Godinho,^b Humberto Vieira Fajardo^c and Márcio José da Silva*a

^{a.} Chemistry Department, Federal University of Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil.

^{b.} Chemistry Institute, Federal University of Catalão, Catalão, Goiás, CEP 75.704-020, Brazil.

^c Chemistry Department, Federal University of Ouro Preto, Ouro Preto, CEP 35400-000, Minas Gerais, Brazil.

SUPPLEMENTAL MATERIAL

Fig SM1. Comparison of conversion and selectivity of nerol oxidation with hydrogen peroxide over different solid

catalysts

Fig. SM2 Conversion and selectivity of nerol oxidation reactions with H₂O₂ in the presence of ZnWO₄ - 2.0% Dy catalyst^a

^aReaction conditions: nerol (1.375 mmol), H₂O₂ (2.750 mmol), temperature (333 K), catalyst (15 mg), CH₃CN (10 mL), time (8 h) Leaching 1: Stirring 30 min (catalyst + solvent); after that, the catalyst was removed by centrifugation and the substrate and hydrogen peroxide were placed in the reaction medium; the reaction was followed for 8 h with aliquots periodically collected.

Leaching 2: all components were placed in the reaction medium for 30 min under stirring; after this time, the catalyst was removed by centrifugation and the reaction proceeded normally until 8 h was completed.

Fig. SM3 Conversion and selectivity of nerol oxidation reactions with H₂O₂ in the presence of ZnWO₄ catalyst^a

^aReaction conditions: nerol (1.375 mmol), H₂O₂ (2.750 mmol), temperature (333 K), catalyst (15 mg), CH₃CN (10 mL), time (8 h)

Leaching 1: Stirring 30 min (catalyst + solvent); after that, the catalyst was removed by centrifugation and the substrate and hydrogen peroxide were placed in the reaction medium; the reaction was followed for 8 h with aliquots periodically collected.

Leaching 2: all components were placed in the reaction medium for 30 min under stirring; after this time, the catalyst was removed by centrifugation and the reaction proceeded normally until 8 h was completed.

NEROL PRODUCTS

Nerol epoxide

EIMS 70 eV, *m/z* (rel. int. %): 170 [M]⁺ (1), 152 (1), 137 (1), 109 (67), 95 (27), 82 (40), 69 (65), 67 (68), 55 (35), 43 (89), 41 (100).

Fig. SM2 Mass spectrum of nerol epoxide1

Neraldehyde

EIMS 70 eV, *m/z* (rel. int. %): 152 [M]⁺ (1), 94 (27), 84 (24), 69 (80), 53 (14), 41 (100), 39 (23).

Fig. SM3 Mass spectrum of neraldehyde^{2,3}

BORNEOL PRODUCT

Camphor

Fig. SM4 Mass spectrum of camphor⁴

GERANIOL PRODUCTS

Geraniol diepoxide

EIMS 70 eV, *m/z* (rel. int. %): 186 [M]⁺ (1), 155 (1), 125 (9), 111 (10), 93 (7), 84 (29), 71 (30), 59 (22), 43 (100).

Fig. SM5 Mass spectrum of geraniol diepoxide¹

Geraniol epoxide

EIMS 70 eV, *m/z* (rel. int. %): 152 [M-H₂O]⁺ (0.7), 137 (1), 109 (57), 97 (5), 85 (7), 81 (24), 71 (18), 67 (65), 59 (11), 57 (6), 55 (40), 43 (90), 41 (100).

Fig. SM6 Mass spectrum of geraniol epoxide1

Geranaldehyde

EIMS 70 eV, *m/z* (rel. int. %): 152 [M]⁺ (3), 137 (7), 94 (13), 84 (24), 69 (94), 41 (100).

Fig. SM7 Mass spectrum of geranaldehyde³

α-TERPINEOL PRODUCTS

p-menthan-2-ol, 1,8-epoxy

EIMS 70 eV, *m/z* (rel. int. %): 170 [M]⁺ (10), 126 (50), 108 (79), 71 (56), 43 (100), 41 (33).

Fig. SM8 Mass spectrum of p-menthan-2-ol, 1,8-epoxy⁵

α -Terpineol epoxide

EIMS 70 eV, *m/z* (rel. int. %): 170 [M]⁺ (0.1), 71 (69), 59 (60), 43 (100), 41 (26).

Fig. SM9 Mass spectrum of α -terpineol epoxide⁵

References used in Fig.SM1.

- Silva M J, Andrade P H S, Ferreira S O, Vilanculo C B, Oliveira C M O (2018) Monolacunary K₈SiW₁₁O₃₉-Catalyzed Terpenic Alcohols Oxidation with Hydrogen Peroxide. Catal Lett 148:2516-2434
- Viana L A S, Silva G R N, Silva M J (2018) A Highly Selective Na₂WO₄-Catalyzed of Terpenic Alcohols by Hydrogen Peroxide. Catal Lett 148:374-386
- Vilanculo C B, Silva M J (2020) Unraveling the role of the lacunar Na₇PW₁₁O₃₉ catalyst in the oxidation of terpene alcohols with hydrogen peroxide at room tempearature. New J Chem 44:2813-2820
- Batalha D C, Ferreira S O, Silva R C, Silva M J (2020) Cesium-Exchanged Lacunar Keggin Heteropolyacid Salts: Efficient Solid Catalyst for the Green Oxidation of Terpenics Alcohols with Hydrogen Peroxide. ChemSelect 5:1976:1986
- Batalha D C, Marins N H, Silva R C, Carreño N L V, Farjado H V, Silva M J (2020) Oxidation of terpenic alcohols with hydrogen peroxide promoted by Nb₂O₅ obtained by microwave-assisted hydrothermal method. Mol Catal 489:110941:110952
- 6. Somma, F., & Strukul, G. (2004). Oxidation of geraniol and other substituted olefins with hydrogen peroxide using mesoporous, sol–gel-made tungsten oxide–silica mixed oxide catalysts. J. Catal., 227(2):344.
- Somma, F., Canton, P., & Strukul, G. (2005). Effect of the matrix in niobium-based aerogel catalysts for the selective oxidation of olefins with hydrogen peroxide. J. Catal., 229(2): 490.