Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

New Journal of Chemisrty

In-situ Construction of One-Dimensional Porous MnO@C Nanorods for

electrode materials

Jing Lin,^a Lei Yu,^{b*} Wanqiang Liu,^c Huaze Dong,^a Xiongzi Dong,^a Ming Zhao,^a Yuanyuan Zhai,^a Ji Xiang^a, Mengyue Chen^a

a Department of Chemical and Chemical Engineering, Hefei Normal University, Hefei 230601, Anhui, China.

b Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031,Anhui, China.

c School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China.

* Corresponding author: Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China.

E-mail addresses: yulei@aiofm.ac.cn (L. Yu).

Phone/Fax: +86-551-6559-1589.

Fax: +86-431-8526-2836.

Figure S1. X-Ray Powder Diffraction (XRD) pattern of MnOOH.

Figure S2. XRD pattern of the final product after the TGA tests.

Figure S3 N_2 adsorption-desorption profile of bare MnO.

Figure S4. Electrochemical performance of MnOOH. (a) Cyclic voltammograms, (b) rate capability, and (c) cycling performance at (c) 0.5 and (d) 2.0 A g⁻¹.

Figure S5. (a) TGA curve and (b) rate capacities of MnO@C annealed at 600 °C for 4 h.

The lithium ions and electron transport kinetics with the MnO@C and MnOOH are described by electrochemical impedance spectroscope (EIS) measurements. Fig. S6 presents the Nyquist plots of MnOOH and MnO@C electrodes in the fresh cells, with the equivalent circuit model revealed in the inset. According to the fitting results in Table S1, for both the MnOOH and MnO@C electrodes, the charge-transfer resistance (R_{ct}) of MnO@C (i.e. 71.6 Ω) is much lower than that of bare MnOOH (156.2 Ω), suggesting that the reactions of MnO@C are faster than bare MnO. Moreover, the internal resistance (R_s) and resistance of SEI film (R_{SEI}) values of MnO@C are smaller than that of MnOOH, meaning that MnO@C is beneficial for the enhanced electron transport.

Figure S6. Nyquist plots of MnO@C and MnOOH electrode. Inset is the model of the equivalent

circuit.

Table S1 Impedance parameters, R_s , R_{SEI} and R_{ct} , obtained from the EIS plots of MnOOH andMnO@C.

LIB	$R_{ m s}\left(\Omega ight)$	$R_{ m SEI}\left(\Omega ight)$	$R_{ m ct}\left(\Omega ight)$
MnOOH	4.304	13.05	156.2
MnO@C	2.016	5.23	71.6