Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

## **Electronic Supplementary Information**

Role of non-covalent interactions in the supramolecular architectures of mercury(II) diphenyldithiophosphates: An experimental and theoretical investigation

Pretam Kumar<sup>a</sup>, Snehasis Banerjee<sup>b</sup>, Anu Radha<sup>a</sup>, Tahira Firdoos<sup>a</sup>, Subash Chandra Sahoo<sup>c</sup> and Sushil K. Pandey<sup>\*a</sup>

<sup>a</sup>Post Graduate Department of Chemistry, University of Jammu, Baba Saheb Ambedkar Road, Jammu Tawi-180006, India

<sup>b</sup>Govt. College of Engineering and Leather Technology, Salt Lake Sector-III, Block-

LB, Kolkata 700106, India

<sup>c</sup>Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh-160 014, India

\*Email: <u>kpsushil@rediffmail.com</u>



**Fig. S1.** A dimer unit of complex 1 generated through intermolecular Hg $\cdots\pi$  SpB interactions. Hydrogen atoms are omitted for clarity. Symmetry transformation = 1 - x, 1 - y, 1 - z, where Hg $1\cdots$ Cg(3) = 3.521 Å [Cg(3) = center of mass of the ring C(21)-C(26)].



**Fig. S2.** Supramolecular network of the complex **2** generated through C···H interactions. Only the relevant hydrogen atoms are shown for clarity. Symmetry transformation = - x, 1 - y, 1 - z, where H7B···C3 = 2.898 Å.



Fig. S3. Supramolecular network of complex 2 generated through C···H interactions. Only the relevant hydrogen atoms are shown for clarity. Symmetry transformation = x, 1.5 - y, -1/2 + z, where H21···C21= 2.820 Å.



Fig. S4. Supramolecular polymer chain of complex 2 generated through H…H interactions. Only

the relevant hydrogen atoms are shown for clarity. Symmetry transformation = x, 1.5 - y, -1/2 + z, where H21…H21= 2.203 Å.



**Fig. S5.** Supramolecular polymer chain of complex **2** generated through C-H $\cdots\pi$  interactions. Only the relevant hydrogen atoms are shown for clarity. Symmetry transformation = - *x*, 1 - y, 1 - *z*, where H7A $\cdots$ Cg5 = 3.429 Å [Cg(5) = center of mass of the ring C(1)-C(6)].



Fig. S6. <sup>1</sup>H NMR spectra of complex 1



Fig. S7. <sup>13</sup>C NMR spectra of complex 1



Fig. S8. <sup>31</sup>P NMR spectra of complex 1



Fig. S9. <sup>1</sup>H NMR spectra of complex 2



Fig. S10. <sup>13</sup>C NMR spectra of complex 2



Fig. S11. <sup>31</sup>P NMR spectra of complex 2



Fig. S12. IR spectra of complex 1



Fig. S13. IR spectra of complex 2



Fig. S14. TGA of complex 1



Fig. S15. TGA of complex 2

Table S1. Selected bond lengths (angstroms) of complexes  $1 \mbox{ and } 2$ 

| Complex 1 |             | Complex 2           |             |  |
|-----------|-------------|---------------------|-------------|--|
| S2—P1     | 2.0408 (14) | Hg1—S3              | 2.3907 (11) |  |
| S3—P2     | 2.0590 (14) | Hg1—S2              | 2.4267 (12) |  |
| P1—S1     | 1.9471 (14) | Hg1—S4 <sup>i</sup> | 2.7283 (11) |  |
| P1—O1     | 1.588 (3)   | Hg1—S1              | 2.8868 (12) |  |
| P1—O2     | 1.587 (2)   | P2—S3               | 2.0139 (14) |  |
| P2—S4     | 1.9106 (14) | P2—S4               | 1.9379 (15) |  |

| Р2—ОЗ  | 1.590 (3)   | P2—O4  | 1.585 (3)   |
|--------|-------------|--------|-------------|
| P2—O4  | 1.595 (2)   | P2—O3  | 1.586 (3)   |
| 01—C1  | 1.414 (4)   | P1—S2  | 2.0254 (15) |
| O2—C11 | 1.409 (4)   | P1—S1  | 1.9441 (16) |
| O3—C21 | 1.413 (4)   | P1—O2  | 1.595 (3)   |
| O4—C31 | 1.400 (4)   | P1—O1  | 1.589 (3)   |
| Hg1—S1 | 2.8347 (10) | O4—C25 | 1.413 (4)   |
| Hg1—S2 | 2.3875 (9)  | O2—C9  | 1.421 (5)   |
| Hg1—S3 | 2.3591 (9)  | O3—C17 | 1.404 (5)   |
|        |             | O1—C1  | 1.423 (5)   |

Symmetry code(s): (i) -x+1, y-1/2, -z+1/2.

| Complex 1 |             | Complex 2               |             |
|-----------|-------------|-------------------------|-------------|
| S3—Hg1—S2 | 166.15 (3)  | S3—Hg1—S2               | 157.98 (4)  |
| S3—Hg1—S1 | 113.75 (3)  | S3—Hg1—S4 <sup>i</sup>  | 102.62 (4)  |
| S2—Hg1—S1 | 78.46 (3)   | S3—Hg1—S1               | 107.05 (4)  |
| P2—S3—Hg1 | 104.06 (5)  | S2—Hg1—S4 <sup>i</sup>  | 97.01 (4)   |
| S4—P2—S3  | 110.35 (6)  | S2—Hg1—S1               | 77.74 (4)   |
| O3—P2—S3  | 109.94 (11) | S4 <sup>i</sup> —Hg1—S1 | 102.89 (4)  |
| O3—P2—S4  | 117.60 (10) | S4—P2—S3                | 109.94 (7)  |
| O3—P2—O4  | 93.28 (13)  | O4—P2—S3                | 111.27 (11) |
| O4—P2—S3  | 107.26 (10) | O4—P2—S4                | 109.75 (11) |

 Table S2. Selected bond angles (degrees) of complexes 1 and 2

| O4—P2—S4  | 117.02 (11) | O4—P2—O3                | 100.20 (14) |
|-----------|-------------|-------------------------|-------------|
| P1—S2—Hg1 | 89.36 (4)   | O3—P2—S3                | 109.65 (12) |
| S1—P1—S2  | 112.73 (6)  | O3—P2—S4                | 115.71 (12) |
| O2—P1—S2  | 108.32 (11) | P2—S3—Hg1               | 101.83 (5)  |
| O2—P1—S1  | 115.95 (12) | S1—P1—S2                | 115.30 (7)  |
| O2—P1—O1  | 94.37 (13)  | O2—P1—S2                | 109.66 (13) |
| O1—P1—S2  | 108.97 (12) | O2—P1—S1                | 113.10 (12) |
| O1—P1—S1  | 114.94 (11) | O1—P1—S2                | 102.50 (12) |
| P1—S1—Hg1 | 79.19 (4)   | O1—P1—S1                | 115.66 (13) |
| C21—O3—P2 | 123.9 (2)   | O1—P1—O2                | 99.01 (16)  |
| C11—O2—P1 | 122.4 (2)   | P1—S2—Hg1               | 88.87 (5)   |
| C31—O4—P2 | 123.2 (2)   | P2—S4—Hg1 <sup>ii</sup> | 105.18 (5)  |
| C1—O1—P1  | 121.5 (2)   | P1—S1—Hg1               | 78.09 (5)   |
|           |             | C25—O4—P2               | 124.1 (2)   |
|           |             | C9—O2—P1                | 124.2 (3)   |
|           |             | С17—О3—Р2               | 125.8 (3)   |
|           |             | C1—O1—P1                | 120.3 (2)   |

Symmetry code(s): (i) -x+1, y-1/2, -z+1/2; (ii) -x+1, y+1/2, -z+1/2.