Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

1

Supporting Information

Novel 7-(1*H*-Pyrrol-1-yl)spiro[chromeno[4,3-*b*]quinoline-6,1'-cycloalkanes]: Synthesis, Cross-Coupling Reactions and Photophysical Properties

Letícia B. Silva, Felipe S. Stefanello, Sarah C. Feitosa, Clarissa P. Frizzo, Marcos A. P. Martins, Nilo Zanatta, Bernardo A. Iglesias^b, Helio G. Bonacorso^{a*}

^aNúcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 – Santa Maria, RS – Brazil. ^bLaboratório de Bioinorgânica e Materiais Porfirínicos, Departamento de Química, Universidade Federal de Santa Maria, 97105-900 – Santa Maria, RS – Brazil. Email: <u>helio.bonacorso@ufsm.br</u>

General	2
NMR Spectra	4
UV-Vis analysis	21
References	28
	General NMR Spectra UV-Vis analysis References

1. General

¹H and ¹³C NMR spectra were acquired on Bruker DPX 400 MHz (**3a-g**, **3i-k**) or on a Bruker Avance III 600 MHz (**3h**, **4**, **5**, **6**) spectrometers for one-dimensional experiments, with 5-mm sample tubes, 298 K, and digital resolution of 0.01 ppm, in CDCl₃ as solvent, and using TMS as the internal reference. All spectra can be found in Figures S1–S33 in the *Supplementary information*. All results are reported with the chemical shift (δ), multiplicity, integration, and coupling constant (Hz). The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and dd = double doublet. All NMR chemical shifts were reported in parts per million, which is relative to the internal reference. The CHN elemental analyses were performed on a Perkin–Elmer 2400 CHN elemental analyzer (University of São Paulo, USP, Brazil). The HRMS analyses were performed on a a hybrid highresolution and high-accuracy (5µL/L) micrOTOF-Q mass spectrometer (Bruker Scientific®, Billerica, MA, USA) at (Caxias do Sul University, UCS, Brazil).

For mass spectrometry, the fractions were dissolved in a solution consisting of 50% (v/v) chromatographic grade acetonitrile (Tedia, Fairfild, OH, USA) and 50% (v/v) deionized water, to which 0.1% formic acid and 0.1% ammonium formate had been added, for analysis in positive ESI(+). The individual solutions were infused directly into the ESI source via a syringe pump (Harvard Apparatus, Hamilton, Reno, NV, USA), at a flow rate of 180µL/min. The ESI(+)-and ESI(-) mass spectrometric (MS) and tandem MS-MS profiles were acquired using a hybrid high-resolution and high-accuracy $(5\mu L/L)$ micrOTOF-Q mass spectrometer (Bruker Scientific®, Billerica, MA, USA) under the following conditions: capillary and cone voltages were set to +3500 and +40V, respectively, with a desolvation temperature of 200°C. The collision-induced dissociation energy (CID) for the ESI (+) MS-MS was optimized for each component. For data acquisition and processing, time-of-flight (TOF) control and data analysis software (Bruker Scientific®) was used. The data were collected in the 70–800 m/z range, at a rate of two scans/s, providing 50,000 full width at half maximum (FWHM) resolution at 200 m/z. No important ions were observed below 90 m/z and above 1000 m/z, so the ESI(+)-MS data are shown for the range of 90–1000 m/z.¹

Electronic UV-Vis absorption analysis of compounds in CH₃CN, CH₂Cl₂ and DMSO solutions were done with a Shimadzu UV2600 spectrophotometer (data interval of 1.0 nm) at 250 to 500 nm range. Steady-state emission fluorescence analysis of samples

in CH₃CN, CH₂Cl₂ and DMSO solutions were measured with a Varian Cary50 fluorescence spectrophotometer (slit of 5.0 mm; em/exc) and corrected according to the manufacturer's instructions. Fluorescence quantum yield values (Φ_{fl}) of the compounds in solution were determined by comparing the corrected fluorescence spectra with that of 9,10-diphenylanthracene (DPA) in chloroform ($\Phi_{fl} = 0.65$, $\lambda_{ex} = 366$ nm) as the standard for the fluorescence yield. All spectra can be found in Figures S34–S48 in the *Supplementary information*.

2. NMR Spectra

Figure S2. ¹³C NMR spectra at 150 MHz in CDCl₃ of compound 1d.

Figure S5. ¹H-¹H NOESY spectra at 600 MHz in CDCl₃ of compound 1d.

Figure S31. ¹³C NMR spectra at 150 MHz in CDCl₃ of compound **5**

Figure S33. ¹³C NMR spectra at 150 MHz in CDCl₃ of compound 6

3. UV-Vis analysis

Figure S34. UV-Vis ([] = 10^{-5} M range) spectra of derivative 1h.

Figure S35. UV-Vis ([] = 10^{-5} M range) spectra of derivative 3h.

Figure S36. UV-Vis ([] = 10^{-5} M range) spectra of derivatives **4**, **5**, and **6** in CH₃CN solution, respectively.

Figure S37. UV-Vis ([] = 10^{-5} M range) spectra of derivatives **4**, **5**, and **6** in CH₂Cl₂ solution, respectively.

Figure S38. UV-Vis ([] = 10^{-5} M range) spectra of derivatives 4, 5, and 6 in DMSO solution, respectively.

Figure S39. Steady-state emission and excitation spectra ([] = 10^{-6} M range) of derivative **1h** in CH₃CN solution.

Figure S40. Steady-state emission and excitation spectra ([] = 10^{-6} M range) of derivative **3h** in CH₃CN solution.

Figure S41. Steady-state emission and excitation spectra ([] = 10^{-6} M range) of derivative **4** in CH₃CN solution.

Figure S42. Steady-state emission and excitation spectra ([] = 10^{-6} M range) of derivative **5** in CH₃CN solution.

Figure S43. Steady-state emission and excitation spectra ([] = 10^{-6} M range) of derivative **6** in CH₃CN solution.

Figure S44. Steady-state emission and excitation spectra ([] = 10^{-6} M range) of derivative **1h** in DMSO solution.

Figure S45. Steady-state emission and excitation spectra ([] = 10^{-6} M range) of derivative **3h** in DMSO solution.

Figure S46. Steady-state emission and excitation spectra ([] = 10^{-6} M range) of derivative **4** in DMSO solution.

Figure S47. Steady-state emission and excitation spectra ([] = 10^{-6} M range) of derivative **5** in DMSO solution.

Figure S48. Steady-state emission and excitation spectra ([] = 10^{-6} M range) of derivative **6** in DMSO solution.

4. References

 Bristow, A. W. T.; Webb, K. S. Intercomparison study on accurate mass measurement of small molecules in mass spectrometry. J. Am. Soc. Mass Spectrom. 2003, 14 (10), 1086– 1098. https://doi.org/10.1016/S1044-0305(03)00403-3.