A novel 3D energetic MOF of high energy content: synthesis and explosive performance of a silver nitrate compound with 4,4',5,5'-

tetraamine-3,3'-bis(1,2,4-trazole)

Jiaping Zhu,^a Jielai Xu,^a Chaojian Yao,^a Tong Zhan,^{b, c} Weibing Liu,^a and Hua Tan^{*, a}

a. College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, P. R. China * Email address: huatan@gdupt.edu.cn

b. College of Environmental Science and engineering, Guangdong University of Petrochemical Technology, Maoming 525000, P. R. China

c. Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming 525000, P. R. China

Fig. S1 Packing structure of $H_2(TABT)(NO_3)_2$

Fig. S2 Packing structure of $\{Ag_2(TABT)(NO_3)_2\}_n$

Compound	H ₂ TABT(NO ₃) ₂	Ag ₂ (TABT)(NO ₃) ₂
Formula	C ₄ H ₁₀ N ₁₂ O ₆	C ₂ H ₄ AgN ₆ O ₃
Mw /g mol ⁻¹	322.24	267.98
Crystal system	Triclinic	Monoclinic
Crystal group	<i>P</i> -1	$P2_{1}/c$
a/ Å	6.672(2)	8.9723(14)
b/ Å	6.9096(18)	5.0146(8)
<i>c/</i> Å	6.992(2)	14.813(2)
<i>α</i> /°	73.521(12)	90
$\beta/^{\circ}$	89.005(3)	105.854(2)
γ/°	75.832(5)	90
$\nu/\text{\AA}^3$	299.22(15)	641.14(17)
Z	1	4
$ ho_{cale.}$ /g cm ⁻³	1.788	2.776
$\mu \ \mathrm{mm}^{-1}$	0.161	3.120
<i>F</i> (000)	166	516.0
2θ range /°	6.086-55.352	5.718-55.112
$\lambda(Mok\alpha)/Å$	0.71073	0.71073
Temp. /K	100.15	100.15
Refl. collected	1823	3651
Refl. unique	1311	1467
R (int)	0.0138	0.0144
Data /rest. /param.	1311/0/101	1467/0/109
GOOF	1.132	1.077
$R_1, wR_2[I > 2\sigma(I)]$	$R_1 = 0.0433, wR_2 = 0.1001$	$R_1=0.0183, wR_2=0.0402$
R_1 , w R_2 (all data)	$R_1 = 0.0550, wR_2 = 0.1042$	$R_1=0.0233, wR_2=0.0423$
Index range	$-8{\leqslant}h{\leqslant}7, -9{\leqslant}k{\leqslant}7, -8{\leqslant}l{\leqslant}8$	$-11 \le h \le 9, -5 \le k \le 6, -18 \le l \le 19$
Largest diff. peak/hole /e Å ⁻³	0.32/-0.32	0.43/-0.37
CCDC	2025060	2025062

Table S1. Crystal properties of $H_2TABT(NO_3)_2$ and $Ag_2(TABT)(NO_3)_2$

	Atom	Length/Å	Atom	Length/Å
H ₂ (TABT)(NO ₃) ₂	N(1)–N(2)	1.375(2)	N(5)–C(2)	1.355(2)
	N(1)–C(1)	1.304(3)	C(1)-C(1)#1	1.454(4)
	N(2)–C(2)	1.332(2)	O(1)–N(6)	1.266(2)
	N(3)–C(2)	1.319(3)	O(2)–N(6)	1.240(2)
	N(4)–N(5)	1.405(2)	O(3)–N(6)	1.257(2)
	N(5)–C(1)	1.384(2)		
Ag ₂ (TABT)(NO ₃) ₂	Ag(1)-Ag(1)#1	3.3374(4)	N(2)–N(4)	1.407(2)
	Ag(1)-Ag(1)#2	3.3374(4)	N(2)–C(1)	1.366(3)
	Ag(1)–O(2)	2.5772(17)	N(2)–C(2)	1.373(3)
	Ag(1)–N(4)#3	2.4612(19)	N(3)–C(1)	1.328(3)
	Ag(1)–N(5)	2.1905(19)	N(5)–N(6)	1.400(3)
	Ag(1)–N(6)#1	2.2738(18)	N(5)–C(1)	1.331(3)
	O(1)–N(1)	1.250(3)	N(6)–C(2)	1.311(3)
	O(2)–N(1)	1.262(3)	C(2)–C(2)#2	1.455(5)
	O(3)–N(1)	1.253(3)		

Table S2. Bond length of H₂(TABT)(NO₃)₂ and Ag₂(TABT)(NO₃)₂

	Atom	Angle/°	Atom	Angle/°
H ₂ (TABT)(NO ₃) ₂	C(1)-N(1)-N(2)	104.25(15)	N(5)-C(1)-C(1)#1	124.1(2)
	C(2)–N(2)–N(1)	111.93(15)	N(2)-C(2)-N(5)	106.05(16)
	C(1)-N(5)-N(4)	132.68(15)	N(3)-C(2)-N(2)	128.91(17)
	C(2)-N(5)-N(4)	120.81(15)	N(3)-C(2)-N(5)	125.04(17)
	C(2)–N(5)–C(1)	106.45(15)	O(2)–N(6)–O(1)	119.67(15)
	N(1)-C(1)-N(5)	111.31(16)	O(2)–N(6)–O(3)	121.10(16)
	N(1)-C(1)-C(1)#1	124.6(2)	O(3)–N(6)–O(1)	119.22(15)
Ag ₂ (TABT)(NO ₃) ₂	Ag(1)#1-Ag(1)-Ag(1)#2	97.401(15)	O(3)–N(1)–O(2)	119.4(2)
	O(2)-Ag(1)-Ag(1)#2	157.97(4)	C(1)–N(2)–N(4)	125.94(19)
	O(2)-Ag(1)-Ag(1)#1	68.68(4)	C(1)–N(2)–C(2)	106.93(18)
	N(4)#3-Ag(1)-Ag(1)#1	139.53(4)	C(2)–N(2)–N(4)	127.09(18)
	N(4)#3-Ag(1)-Ag(1)#2	89.63(5)	N(2)-N(4)-Ag(1)#4	127.28(14)
	N(4)#3-Ag(1)-O(2)	112.11(7)	N(6)–N(5)–Ag(1)	116.29(13)
	N(5)-Ag(1)-Ag(1)#1	88.70(5)	C(1)–N(5)–Ag(1)	135.32(16)
	N(5)-Ag(1)-Ag(1)#2	65.33(5)	C(1)–N(5)–N(6)	107.21(18)
	N(5)-Ag(1)-O(2)	96.41(7)	N(5)-N(6)-Ag(1)#2	115.14(13)
	N(5)-Ag(1)-N(4)#3	129.65(7)	C(2)-N(6)-Ag(1)#2	135.64(16)
	N(5)-Ag(1)-N(6)#1	145.84(7)	C(2)–N(6)–N(5)	108.05(18)
	N(6)#1-Ag(1)-Ag(1)#1	63.24(5)	N(3)-C(1)-N(2)	123.5(2)
	N(6)#1-Ag(1)-Ag(1)#2	97.65(5)	N(3)-C(1)-N(5)	127.6(2)
	N(6)#1-Ag(1)-O(2)	91.20(6)	N(5)-C(1)-N(2)	108.8(2)
	N(6)#1-Ag(1)-N(4)#3	76.35(6)	N(2)-C(2)-C(2)#5	124.5(2)
	N(1)-O(2)-Ag(1)	140.54(15)	N(6)-C(2)-N(2)	109.01(19)
	O(1)-N(1)-O(2)	120.2(2)	N(6)-C(2)-C(2)#5	126.5(3)
	O(1)-N(1)-O(3)	120.3(2)		

Table S3. Bond angle of H₂(TABT)(NO₃)₂ and Ag₂(TABT)(NO₃)₂

	Atom	Angle/°	Atom	Angle/°
H ₂ (TABT)(NO ₃) ₂	N(1)-N(2)-C(2)-N(3)	-179.7(2)	N(4)-N(5)-C(2)-N(3)	-2.7(3)
	N(1)-N(2)-C(2)-N(5)	-0.4(2)	C(1)-N(1)-N(2)-C(2)	0.2(2)
	N(2)-N(1)-C(1)-N(5)	0.1(2)	C(1)-N(5)-C(2)-N(2)	0.4(2)
	N(2)-N(1)-C(1)-C(1)#1	179.1(2)	C(1)-N(5)-C(2)-N(3)	179.73(19)
	N(4)-N(5)-C(1)-N(1)	-177.45(18)	C(2)-N(5)-C(1)-N(1)	-0.3(2)
	N(4)-N(5)-C(1)-C(1)#1	3.5(4)	C(2)-N(5)-C(1)-C(1)#1	-179.3(2)
	N(4)-N(5)-C(2)-N(2)	177.95(16)		
Ag ₂ (TABT)(NO ₃) ₂	Ag(1)-O(2)-N(1)-O(1)	148.63(19)	N(5)-N(6)-C(2)-N(2)	0.5(3)
	Ag(1)-O(2)-N(1)-O(3)	-32.5(3)	N(5)-N(6)-C(2)-C(2)#2	-179.3(3)
	Ag(1)-N(5)-N(6)-Ag(1)#1	-0.01(19)	N(6)-N(5)-C(1)-N(2)	-0.7(3)
	Ag(1)-N(5)-N(6)-C(2)	169.61(15)	N(6)-N(5)-C(1)-N(3)	-178.1(2)
	Ag(1)-N(5)-C(1)-N(2)	-167.26(17)	C(1)-N(2)-N(4)-Ag(1)#3	169.81(17)
	Ag(1)-N(5)-C(1)-N(3)	15.3(4)	C(1)-N(2)-C(2)-N(6)	-0.9(3)
	Ag(1)#1-N(6)-C(2)-N(2)	167.04(16)	C(1)-N(2)-C(2)-C(2)#2	178.9(3)
	Ag(1)#1-N(6)-C(2)-C(2)#2	-12.8(5)	C(1)-N(5)-N(6)-Ag(1)#1	-169.53(14)
	N(4)-N(2)-C(1)-N(3)	-3.8(4)	C(1)-N(5)-N(6)-C(2)	0.1(3)
	N(4)-N(2)-C(1)-N(5)	178.6(2)	C(2)-N(2)-N(4)-Ag(1)#3	-13.0(3)
	N(4)-N(2)-C(2)-N(6)	-178.5(2)	C(2)-N(2)-C(1)-N(3)	178.6(2)
	N(4)–N(2)–C(2)–C(2)#2	1.3(4)	C(2)-N(2)-C(1)-N(5)	1.0(3)

Table S4. Torsion Angle of H₂(TABT)(NO₃)₂ and Ag₂(TABT)(NO₃)₂

Table S5 Hydrogen bonding parameters of H₂(TABT)(NO₃)₂ and Ag₂(TABT)(NO₃)₂

5	0 01	= \) (<i>•)</i> = 0		
	Bond	D–H····A/Å	d(H…A)/Å	d(D…A)/Å	∠DHA/°
H ₂ (TABT)(NO ₃) ₂	N(3)-H(3A)····O(2)	0.880	2.242	2.986	142.1
	N(3)-H(3A)····O(3)	0.880	2.342	3.045	136.9
	N(3)-H(3B)····O(1)	0.880	2.015	2.884	169.2
	N(2)-H(2)····O(1)	0.880	1.843	2.718	172.9
	N(4)-H(4A)····O(3)	0.821	2.213	3.020	167.8
	N(4)-H(4B)····O(2)	0.881	2.334	3.049	138.4
	N(4)-H(4A)····N(1)	0.821	2.756	3.016	100.6
	N(4)-H(4B)····N(1)	0.881	2.737	3.016	99.94
Ag ₂ (TABT)(NO ₃)	N(3)–H(3A)····O(3)	0.880	2.085	2.875	148.9
2	N(4)-H(4A)····O(2)	0.910	2.150	2.796	127.2
	N(4)-H(4B)····O(3)	0.910	2.017	2.870	155.5
	N(4)-H(4A)····O(1)	0.910	2.757	2.881	88.48
	N(4)–H(4B)····O(1)	0.910	2.518	2.881	104.3

Fig. S3 DSC of TABT and its salts at the heating rate of 5 °C min⁻¹

Fig. S4 TG-DSC curves of H₂(TABT)(NO₃)₂ under the different heating rates

Fig. S5 TG-DSC curves of Ag₂(TABT)(NO₃)₂ under the different heating rates

	1	2()())2		5/2]11		
β	$C_4H_{10}N_{12}O_6$		$C_4H_8N_{12}O_6Ag_2$			
	То	Tp	То	Тр		
2	245.5	253.8	290.8	296.5		
5	256.3	260.6	299.4	301.2		
10	259.0	264.5	304.9	306.2		
20	264.0	269.0	311.1	312.2		
$E_{\mathbf{k}}$	368.6		392.7			
r _k	0.9992		0.99	0.9931		
A	3.295×10^{35}		1.140>	1.140×10^{35}		
E_{o}	359.0		382	382.6		
r _o	0.9992		0.9935			
E_{a}	363.8		387.6			
T_{e0}	232.4		281.8			
T_{b}	23	8.5	288.7			

Table S6 Thermo- kinetic parameters for H₂(TABT)(NO₃)₂ and [Ag₂(TABT)(NO₃)₂]_n

 Table S7 Calculated parameters used in the isomeric reactions.

	H ₀ /Hartree	$\Delta H_{\rm f}^{\theta}({\rm gas})/$	$\Delta H_{\rm f}^{\theta}({\rm gas})/$	$A/(\text{\AA}^2)$	v	σ^2_{tot}	$\Delta H^{ heta}_{ m f,sub}/$	$\Delta H^{\theta}_{\rm f,sub}/$	$\Delta H^{ heta}_{ ext{f,solid}}/$	$\Delta H^{\theta}_{\rm f,solid}$
		(kJ mol ⁻¹)	(kcal mol-				(kcal mol-	(kJ mol-	(kJ mol ⁻¹)	(kcal mol-
			1)				1)	1)		1)
TABT	-700.5564	472.0 ^a	112.8	-	-	-		-	-	-
HNO_3	-279.2489	-134.41 ^b	-32.11	-	-	-		-	-	-
AgNO ₃	-5455.0253	284.9 ^b	68.06	-	-	-		-	-	-
1	-1259.1179	20.56	4.912	306.0	0.2329	439.1	59.00	247.0	-226.4	-54.09
2	-	-179.7	-42.93	332.5	0.2449	310.9	62.59	262.0	-441.7	-105.5
	11610.7603									

Fig. S6 ¹H of $\{Ag_2(TABT)(NO_3)_2\}_n$