Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Materials

Table S1. Crystallographic data and experimental details for ruthenium(II)-supported phosphovanadomolybdates $[Ru(dmso)_3PMo_6V_3O_{32}]^{6-}$ (1) and $[Ru(PMo_6V_3O_{32})_2]^{14-}$ (2).

Complex	1	2
Empirical formula	$C_6H_{18}Cs_3Mo_6Na_3O_{40}PRuS_3V_3$	$Cs_8Mo_{12}Na_6O_{67}P_2RuV_6$
Formula weight	2154.58	3893.15
Crystal system	orthorhombic	monoclinic
Space group	Pna2 ₁	<i>P</i> 2 ₁ / <i>n</i>
<i>a</i> , Å	20.2810(16)	13.4946(18)
<i>b</i> , Å	19.8627(15)	19.450(3)
<i>c</i> , Å	13.2758(10)	17.180(2)
β , deg		105.833(3)
V, Å ³	5348.0(7)	4338.0(10)
Ζ	4	2
D_{cale} , g cm ⁻³	2.676	2.980
Temperature, K	296(2)	296(2)
F(000), e	4000	3516
μ (Mo <i>K</i> α), mm ⁻¹	4.406	5.919
Total refln	28719	23453
Independent refln	9354	7544
R _{int}	0.0216	0.0391
Ref. parameters	596	476
$R1^{a} / wR2^{b} (I > 2\sigma(I))$	0.0526 / 0.1354	0.0823 / 0.1893
R1 / wR2 (all data)	0.0539 / 0.1359	0.0969 / 0.1946
GoF ^c	1.154	1.214

^a $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$; ^b $wR2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$, $w = [\sigma^2 (F_o^2) + (AP)^2 + BP]^{-1}$, where $P = (Max(F_o^2, 0) + 2F_c^2)/3$ and A and B are constants adjusted by the program; ^c GoF = $S = [\Sigma w (F_o^2 - F_c^2)^2 / (n_{obs} - n_{param})]^{1/2}$, where n_{obs} is the number of data and n_{param} the number of refined parameters.

		-	
Ru(1)-O(6)	2.045(7)	Mo(4)-O(20)	2.203(8)
Ru(1)-O(4)	2.068(7)	Mo(4)-O(21)	2.243(7)
Ru(1)-O(5)	2.083(7)	Mo(5)-O(31)	1.713(9)
Ru(1)-S(2)	2.240(3)	Mo(5)-O(32)	1.720(9)
Ru(1)-S(1)	2.263(3)	Mo(5)-O(26)	1.868(8)
Ru(1)-S(3)	2.266(3)	Mo(5)-O(33)	1.930(8)
Mo(1)-O(15)	1.706(10)	Mo(5)-O(28)	2.252(8)
Mo(1)-O(16)	1.756(11)	Mo(5)-O(27)	2.385(8)
Mo(1)-O(10)	1.903(7)	Mo(6)-O(34)	1.706(9)
Mo(1)-O(26)	1.951(8)	Mo(6)-O(35)	1.739(10)
Mo(1)-O(17)	2.203(8)	Mo(6)-O(30)	1.857(8)
Mo(1)-O(18)	2.235(8)	Mo(6)-O(33)	1.932(8)
Mo(2)-O(25)	1.716(8)	Mo(6)-O(28)	2.254(8)
Mo(2)-O(27)	1.732(7)	Mo(6)-O(29)	2.412(8)
Mo(2)-O(17)	1.885(8)	V(1)-O(7)	1.621(7)
Mo(2)-O(24)	1.933(8)	V(1)-O(4)	1.682(7)
Mo(2)-O(11)	2.194(7)	V(1)-O(10)	1.904(8)
Mo(2)-O(19)	2.292(7)	V(1)-O(11)	1.990(8)
Mo(3)-O(23)	1.706(8)	V(1)-O(17)	1.996(7)
Mo(3)-O(29)	1.743(7)	V(2)-O(8)	1.614(8)
Mo(3)-O(21)	1.896(7)	V(2)-O(5)	1.699(7)
Mo(3)-O(24)	1.941(8)	V(2)-O(11)	1.808(7)
Mo(3)-O(12)	2.184(7)	V(2)-O(12)	1.812(7)
Mo(3)-O(19)	2.307(7)	V(3)-O(9)	1.621(8)
Mo(4)-O(14)	1.707(9)	V(3)-O(6)	1.678(7)
Mo(4)-O(22)	1.718(9)	V(3)-O(13)	1.881(8)
Mo(4)-O(13)	1.909(7)	V(3)-O(21)	1.987(7)
Mo(4)-O(30)	1.961(8)	V(3)-O(12)	1.996(8)
O(6)-Ru(1)-O(4)	87.9(3)	O(22)-Mo(4)-O(21)	166.1(4)
O(6)-Ru(1)-O(5)	84.9(3)	O(13)-Mo(4)-O(21)	72.5(3)
O(4)-Ru(1)-O(5)	86.4(3)	O(30)-Mo(4)-O(21)	81.5(3)
O(6)-Ru(1)-S(2)	88.3(2)	O(20)-Mo(4)-O(21)	80.2(3)
O(4)-Ru(1)-S(2)	91.5(2)	O(14)-Mo(4)-V(3)	100.7(3)
O(5)-Ru(1)-S(2)	172.9(2)	O(22)-Mo(4)-V(3)	132.0(3)
O(6)-Ru(1)-S(1)	178.3(2)	O(13)-Mo(4)-V(3)	33.8(2)
O(4)-Ru(1)-S(1)	90.4(2)	O(30)-Mo(4)-V(3)	117.7(2)
O(5)-Ru(1)-S(1)	94.7(2)	O(20)-Mo(4)-V(3)	73.7(2)
S(2)-Ru(1)-S(1)	92.01(10)	O(21)-Mo(4)-V(3)	39.02(19)
O(6)-Ru(1)-S(3)	90.7(2)	O(31)-Mo(5)-O(32)	103.5(5)
O(4)-Ru(1)-S(3)	174.1(2)	O(31)-Mo(5)-O(26)	102.4(4)
O(5)-Ru(1)-S(3)	87.7(2)	O(32)-Mo(5)-O(26)	99.9(4)
S(2)-Ru(1)-S(3)	94.24(10)	O(31)-Mo(5)-O(33)	96.9(4)

Table S2. Selected bond lengths [Å] and angles [°] for cluster 1.

S(1)-Ru(1)-S(3)	90.94(9)	O(32)-Mo(5)-O(33)	98.3(4)
O(15)-Mo(1)-O(16)	101.8(6)	O(26)-Mo(5)-O(33)	149.5(3)
O(15)-Mo(1)-O(10)	98.6(4)	O(31)-Mo(5)-O(28)	163.4(4)
O(16)-Mo(1)-O(10)	100.5(4)	O(32)-Mo(5)-O(28)	90.2(4)
O(15)-Mo(1)-O(26)	101.4(4)	O(26)-Mo(5)-O(28)	84.2(3)
O(16)-Mo(1)-O(26)	95.4(5)	O(33)-Mo(5)-O(28)	71.5(3)
O(10)-Mo(1)-O(26)	151.3(3)	O(31)-Mo(5)-O(27)	85.3(4)
O(15)-Mo(1)-O(17)	164.3(5)	O(32)-Mo(5)-O(27)	171.2(4)
O(16)-Mo(1)-O(17)	93.0(5)	O(26)-Mo(5)-O(27)	77.2(3)
O(10)-Mo(1)-O(17)	73.1(3)	O(33)-Mo(5)-O(27)	81.1(3)
O(26)-Mo(1)-O(17)	82.4(3)	O(28)-Mo(5)-O(27)	81.3(3)
O(15)-Mo(1)-O(18)	87.1(5)	O(34)-Mo(6)-O(35)	102.5(5)
O(16)-Mo(1)-O(18)	170.7(5)	O(34)-Mo(6)-O(30)	100.1(4)
O(10)-Mo(1)-O(18)	81.0(3)	O(35)-Mo(6)-O(30)	102.3(5)
O(26)-Mo(1)-O(18)	79.7(3)	O(34)-Mo(6)-O(33)	99.1(4)
O(17)-Mo(1)-O(18)	78.6(3)	O(35)-Mo(6)-O(33)	97.0(4)
O(15)-Mo(1)-V(1)	129.4(3)	O(30)-Mo(6)-O(33)	149.0(3)
O(16)-Mo(1)-V(1)	104.7(4)	O(34)-Mo(6)-O(28)	91.6(4)
O(10)-Mo(1)-V(1)	34.6(2)	O(35)-Mo(6)-O(28)	163.2(4)
O(26)-Mo(1)-V(1)	117.9(3)	O(30)-Mo(6)-O(28)	83.9(3)
O(17)-Mo(1)-V(1)	39.31(19)	O(33)-Mo(6)-O(28)	71.5(3)
O(18)-Mo(1)-V(1)	71.20(19)	O(34)-Mo(6)-O(29)	172.5(4)
O(25)-Mo(2)-O(27)	104.3(4)	O(35)-Mo(6)-O(29)	85.0(4)
O(25)-Mo(2)-O(17)	102.7(4)	O(30)-Mo(6)-O(29)	77.8(3)
O(27)-Mo(2)-O(17)	96.8(4)	O(33)-Mo(6)-O(29)	80.0(3)
O(25)-Mo(2)-O(24)	97.2(4)	O(28)-Mo(6)-O(29)	81.1(3)
O(27)-Mo(2)-O(24)	101.2(3)	O(7)-V(1)-O(4)	108.1(4)
O(17)-Mo(2)-O(24)	148.9(3)	O(7)-V(1)-O(10)	99.0(4)
O(25)-Mo(2)-O(11)	94.1(3)	O(4)-V(1)-O(10)	101.8(4)
O(27)-Mo(2)-O(11)	160.4(3)	O(7)-V(1)-O(11)	99.1(4)
O(17)-Mo(2)-O(11)	72.2(3)	O(4)-V(1)-O(11)	93.3(3)
O(24)-Mo(2)-O(11)	82.8(3)	O(10)-V(1)-O(11)	151.5(3)
O(25)-Mo(2)-O(19)	167.3(3)	O(7)-V(1)-O(17)	113.7(4)
O(27)-Mo(2)-O(19)	86.1(3)	O(4)-V(1)-O(17)	137.7(3)
O(17)-Mo(2)-O(19)	83.0(3)	O(10)-V(1)-O(17)	78.0(3)
O(24)-Mo(2)-O(19)	73.2(3)	O(11)-V(1)-O(17)	74.6(3)
O(11)-Mo(2)-O(19)	76.7(3)	O(7)-V(1)-Mo(1)	116.4(3)
O(23)-Mo(3)-O(29)	103.8(4)	O(4)-V(1)-Mo(1)	119.1(3)
O(23)-Mo(3)-O(21)	103.3(4)	O(10)-V(1)-Mo(1)	34.6(2)
O(29)-Mo(3)-O(21)	96.2(3)	O(11)-V(1)-Mo(1)	117.0(2)
O(23)-Mo(3)-O(24)	97.0(4)	O(17)-V(1)-Mo(1)	44.4(2)
O(29)-Mo(3)-O(24)	101.0(3)	O(8)-V(2)-O(5)	107.2(4)
O(21)-MO(3)-O(24)	149 3(3)	O(8)-V(2)-O(11)	109 3(4)
O(23)-Mo(3)-O(12)	95 2(3)	O(5)-V(2)-O(11)	108 6(4)
O(29)-MO(3)-O(12)	159 9(3)	O(8) - V(2) - O(12)	109 2(4)

O(21)-Mo(3)-O(12)	72.8(3)	O(5)-V(2)-O(12)	112.3(4)
O(24)-Mo(3)-O(12)	82.7(3)	O(11)-V(2)-O(12)	110.3(3)
O(23)-Mo(3)-O(19)	167.2(3)	O(9)-V(3)-O(6)	107.6(4)
O(29)-Mo(3)-O(19)	86.0(3)	O(9)-V(3)-O(13)	101.5(4)
O(21)-Mo(3)-O(19)	83.5(3)	O(6)-V(3)-O(13)	101.0(4)
O(24)-Mo(3)-O(19)	72.7(3)	O(9)-V(3)-O(21)	106.7(4)
O(12)-Mo(3)-O(19)	76.2(3)	O(6)-V(3)-O(21)	144.9(4)
O(14)-Mo(4)-O(22)	102.4(5)	O(13)-V(3)-O(21)	79.3(3)
O(14)-Mo(4)-O(13)	100.4(4)	O(9)-V(3)-O(12)	102.0(4)
O(22)-Mo(4)-O(13)	100.5(4)	O(6)-V(3)-O(12)	90.4(3)
O(14)-Mo(4)-O(30)	95.4(4)	O(13)-V(3)-O(12)	149.4(3)
O(22)-Mo(4)-O(30)	101.2(4)	O(21)-V(3)-O(12)	75.3(3)
O(13)-Mo(4)-O(30)	149.6(3)	O(9)-V(3)-Mo(4)	111.7(3)
O(14)-Mo(4)-O(20)	170.6(4)	O(6)-V(3)-Mo(4)	124.4(3)
O(22)-Mo(4)-O(20)	86.8(4)	O(13)-V(3)-Mo(4)	34.3(2)
O(13)-Mo(4)-O(20)	79.2(3)	O(21)-V(3)-Mo(4)	45.3(2)
O(30)-Mo(4)-O(20)	81.0(3)	O(12)-V(3)-Mo(4)	117.1(2)
O(14)-Mo(4)-O(21)	90.8(4)		

Table S3. Selected bond lengths [Å] and angles [°] for cluster 2.

Ru(1)-O(2)	1.953(7)	Mo(5)-O(28)	1.717(10)
Ru(1)-O(3)	1.960(7)	Mo(5)-O(27)	1.892(9)
Ru(1)-O(4)	2.042(6)	Mo(5)-O(30)	1.963(8)
Mo(1)-O(23)	1.711(8)	Mo(5)-O(25)	2.248(7)
Mo(1)-O(22)	1.724(8)	Mo(5)-O(26)	2.341(8)
Mo(1)-O(9)	1.906(7)	Mo(6)-O(32)	1.702(8)
Mo(1)-O(24)	1.940(7)	Mo(6)-O(31)	1.706(8)
Mo(1)-O(20)	2.190(7)	Mo(6)-O(24)	1.884(7)
Mo(1)-O(10)	2.231(7)	Mo(6)-O(30)	1.940(7)
Mo(1)-V(2)	3.1413(19)	Mo(6)-O(25)	2.273(7)
Mo(2)-O(11)	1.712(7)	Mo(6)-O(21)	2.380(7)
Mo(2)-O(21)	1.733(7)	V(1)-O(1)	1.605(8)
Mo(2)-O(10)	1.899(6)	V(1)-O(2)	1.712(8)
Mo(2)-O(12)	1.947(7)	V(2)-O(8)	1.606(8)
Mo(2)-O(7)	2.173(6)	V(2)-O(9)	1.873(7)
Mo(2)-O(19)	2.300(6)	V(2)-O(7)	1.991(7)
Mo(3)-O(13)	1.713(8)	V(2)-O(10)	2.010(6)
Mo(3)-O(26)	1.732(7)	V(3)-O(5)	1.624(7)
Mo(3)-O(14)	1.878(8)	V(3)-O(4)	1.682(6)
Mo(3)-O(12)	1.928(7)	V(3)-O(7)	1.805(7)
Mo(3)-O(6)	2.180(7)	V(3)-O(6)	1.815(7)
Mo(3)-O(19)	2.323(6)	Mo(6)-O(32)	1.702(8)
Mo(4)-O(16)	1.720(10)	Mo(6)-O(31)	1.706(8)
Mo(4)-O(17)	1.730(11)	Mo(6)-O(24)	1.884(7)

Mo(4)-O(15)	1.905(8)	Mo(6)-O(30)	1.940(7)
Mo(4)-O(27)	1.945(9)	Mo(6)-O(25)	2.273(7)
Mo(4)-O(18)	2.205(8)	Mo(6)-O(21)	2.380(7)
Mo(4)-O(14)	2.221(8)	V(1)-O(1)	1.605(8)
Mo(5)-O(29)	1.704(9)	V(1)-O(2)	1.712(8)
O(2)-Ru(1)-O(3)	88.7(4)	O(17)-Mo(4)-O(14)	166.5(5)
O(2)-Ru(1)-O(4)	90.9(3)	O(15)-Mo(4)-O(14)	72.6(3)
O(3)-Ru(1)-O(4)	89.9(3)	O(27)-Mo(4)-O(14)	82.2(3)
O(23)-Mo(1)-O(22)	102.5(4)	O(18)-Mo(4)-O(14)	80.1(3)
O(23)-Mo(1)-O(9)	101.0(4)	O(29)-Mo(5)-O(28)	102.5(5)
O(22)-Mo(1)-O(9)	98.5(4)	O(29)-Mo(5)-O(27)	99.0(4)
O(23)-Mo(1)-O(24)	101.6(4)	O(28)-Mo(5)-O(27)	101.7(5)
O(22)-Mo(1)-O(24)	95.3(4)	O(29)-Mo(5)-O(30)	98.7(4)
O(9)-Mo(1)-O(24)	150.2(3)	O(28)-Mo(5)-O(30)	96.2(5)
O(23)-Mo(1)-O(20)	87.9(4)	O(27)-Mo(5)-O(30)	151.3(3)
O(22)-Mo(1)-O(20)	169.4(4)	O(29)-Mo(5)-O(25)	92.5(4)
O(9)-Mo(1)-O(20)	81.5(3)	O(28)-Mo(5)-O(25)	162.2(5)
O(24)-Mo(1)-O(20)	80.2(3)	O(27)-Mo(5)-O(25)	85.2(3)
O(23)-Mo(1)-O(10)	167.0(4)	O(30)-Mo(5)-O(25)	71.7(3)
O(22)-Mo(1)-O(10)	89.7(4)	O(29)-Mo(5)-O(26)	172.5(4)
O(9)-Mo(1)-O(10)	72.3(3)	O(28)-Mo(5)-O(26)	84.8(4)
O(24)-Mo(1)-O(10)	81.6(3)	O(27)-Mo(5)-O(26)	77.8(3)
O(20)-Mo(1)-O(10)	80.2(3)	O(30)-Mo(5)-O(26)	81.7(3)
O(23)-Mo(1)-V(2)	131.4(3)	O(25)-Mo(5)-O(26)	80.5(2)
O(22)-Mo(1)-V(2)	101.0(3)	O(32)-Mo(6)-O(31)	102.6(4)
O(9)-Mo(1)-V(2)	33.5(2)	O(32)-Mo(6)-O(24)	102.2(4)
O(24)-Mo(1)-V(2)	117.8(2)	O(31)-Mo(6)-O(24)	99.7(4)
O(20)-Mo(1)-V(2)	73.08(18)	O(32)-Mo(6)-O(30)	97.2(4)
O(10)-Mo(1)-V(2)	39.56(16)	O(31)-Mo(6)-O(30)	98.6(4)
O(11)-Mo(2)-O(21)	104.5(3)	O(24)-Mo(6)-O(30)	149.6(3)
O(11)-Mo(2)-O(10)	102.6(3)	O(32)-Mo(6)-O(25)	161.6(4)
O(21)-Mo(2)-O(10)	96.3(3)	O(31)-Mo(6)-O(25)	93.7(4)
O(11)-Mo(2)-O(12)	97.4(3)	O(24)-Mo(6)-O(25)	83.2(3)
O(21)-Mo(2)-O(12)	102.0(3)	O(30)-Mo(6)-O(25)	71.6(3)
O(10)-Mo(2)-O(12)	148.5(3)	O(32)-Mo(6)-O(21)	83.6(3)
O(11)-Mo(2)-O(7)	93.8(3)	O(31)-Mo(6)-O(21)	173.8(4)
O(21)-Mo(2)-O(7)	160.7(3)	O(24)-Mo(6)-O(21)	78.3(3)
O(10)-Mo(2)-O(7)	73.2(3)	O(30)-Mo(6)-O(21)	80.9(3)
O(12)-Mo(2)-O(7)	81.5(3)	O(25)-Mo(6)-O(21)	80.2(2)
O(11)-Mo(2)-O(19)	167.4(3)	O(1)-V(1)-O(2)	109.5(5)
O(21)-Mo(2)-O(19)	85.3(3)	O(8)-V(2)-O(9)	101.9(4)
O(10)-Mo(2)-O(19)	83.8(3)	O(8)-V(2)-O(7)	98.9(4)
O(12)-Mo(2)-O(19)	72.5(3)	O(9)-V(2)-O(7)	150.7(3)
O(7)-Mo(2)-O(19)	77.5(2)	O(8)-V(2)-O(10)	111.2(5)

O(13)-Mo(3)-O(26)	103.1(4)	O(9)-V(2)-O(10)	78.3(3)
O(13)-Mo(3)-O(14)	102.7(4)	O(7)-V(2)-O(10)	75.0(3)
O(26)-Mo(3)-O(14)	96.5(3)	O(8)-V(2)-Mo(1)	116.7(4)
O(13)-Mo(3)-O(12)	97.8(4)	O(9)-V(2)-Mo(1)	34.1(2)
O(26)-Mo(3)-O(12)	102.6(3)	O(7)-V(2)-Mo(1)	117.0(2)
O(14)-Mo(3)-O(12)	148.0(3)	O(10)-V(2)-Mo(1)	44.98(19)
O(13)-Mo(3)-O(6)	95.5(3)	O(5)-V(3)-O(4)	105.8(4)
O(26)-Mo(3)-O(6)	160.3(3)	O(5)-V(3)-O(7)	111.0(4)
O(14)-Mo(3)-O(6)	72.9(3)	O(4)-V(3)-O(7)	107.5(3)
O(12)-Mo(3)-O(6)	80.9(3)	O(5)-V(3)-O(6)	110.1(4)
O(13)-Mo(3)-O(19)	168.8(3)	O(4)-V(3)-O(6)	107.0(3)
O(26)-Mo(3)-O(19)	84.4(3)	O(7)-V(3)-O(6)	115.0(3)
O(14)-Mo(3)-O(19)	84.5(3)	V(1)-O(2)-Ru(1)	151.8(5)
O(12)-Mo(3)-O(19)	72.2(2)	V(3)-O(4)-Ru(1)	121.3(4)
O(6)-Mo(3)-O(19)	78.1(2)	V(3)-O(6)-Mo(3)	118.0(3)
O(16)-Mo(4)-O(17)	102.9(6)	V(3)-O(7)-V(2)	129.9(3)
O(16)-Mo(4)-O(15)	98.1(4)	V(3)-O(7)-Mo(2)	117.8(3)
O(17)-Mo(4)-O(15)	101.4(5)	V(2)-O(7)-Mo(2)	100.6(3)
O(16)-Mo(4)-O(27)	96.1(5)	V(2)-O(9)-Mo(1)	112.4(3)
O(17)-Mo(4)-O(27)	99.9(5)	Mo(2)-O(10)-V(2)	110.1(3)
O(15)-Mo(4)-O(27)	150.9(3)	Mo(2)-O(10)-Mo(1)	141.0(3)
O(16)-Mo(4)-O(18)	169.9(5)	V(2)-O(10)-Mo(1)	95.5(3)
O(17)-Mo(4)-O(18)	87.1(4)	Mo(3)-O(12)-Mo(2)	119.0(3)
O(15)-Mo(4)-O(18)	81.4(3)	Mo(3)-O(14)-Mo(4)	140.6(4)
O(27)-Mo(4)-O(18)	80.2(3)	Mo(2)-O(19)-Mo(3)	92.5(2)
O(16)-Mo(4)-O(14)	90.1(4)	Mo(2)-O(21)-Mo(6)	143.4(4)

Table S4. Valence sums for the crystallographically independent vanadium atoms in clusters 1 and

Cluster		b	ond-valence	sums
		V(1)	V(2)	V(3)
$[Ru(dmso)_{3}PMo_{6}V_{3}O_{32}]^{6-}(1)$	V ^{IV}	4.729	4.710	4.797
	V ^V	4.978	4.958	5.050
$[Ru(PMo_6V_3O_{32})_2]^{14-}(2)$	VIV	4.765	4.808	4.722
	$\mathbf{V}^{\mathbf{V}}$	5.016	5.061	4.971

2 obtained from crystal structure data.

 Table S5. Valence sums for the crystallographically independent molybdenum atoms in clusters 1

 and 2 obtained from crystal structure data.

Cluster				bond-va	lence sum	8	
		Mo(1)	Mo(2)	Mo(3)	Mo(4)	Mo(5)	Mo(6)
$[Ru(dmso)_{3}PMo_{6}V_{3}O_{32}]^{6-}(1)$	Mo ^{VI}	5.961	6.077	6.034	6.131	6.061	5.996
$[Ru(PMo_6V_3O_{32})_2]^{14-}(2)$	Mo ^{VI}	6.138	6.047	6.123	6.054	6.010	6.091