Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Information (SI)

Synthesis, crystal structure and theoretical calculations of two rare-earth borates with DUV cut-off edges

Qin Ma,^a Tinghao Tong,^b and Zhi Su^{a,*}

^a College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 102 Xinyi Road, Xinjiang 830054, P.R. China.

^b Department of Physical Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046,

P. R China.

* Corresponding author, E-mail: <u>suzhixj@sina.com</u>

Atoms	x/a	у/b	z/c	U(e q)	BVS
Y(1)	8154(1)	6813(1)	7597(1)	6(1)	3.00
Zn(1)	8943(1)	5915(1)	3728(1)	7(1)	1.89
B(1)	5648(2)	6877(2)	888(2)	6(1)	2.92
B(2)	7772(2)	4680(2)	577(2)	6(1)	3.00
B(3)	5825(2)	4270(2)	2466(2)	6(1)	3.00
B(4)	4815(2)	1758(2)	3973(2)	5(1)	3.03
B(5)	6613(2)	3971(2)	5096(2)	6(1)	3.05
O(1)	4917(1)	8481(2)	709(1)	7(1)	1.81
O(2)	6808(1)	6253(2)	96(1)	7(1)	1.89
O(3)	8233(1)	3911(2)	-791(1)	6(1)	2.09
O(4)	6818(1)	3515(2)	1400(1)	6(1)	2.01
O(5)	5106(1)	5932(2)	1997(1)	7(1)	2.15
O(6)	4609(1)	2980(2)	2750(1)	6(1)	2.06
O(7)	6839(1)	4680(2)	3782(1)	7(1)	2.04
O(8)	5832(1)	300(2)	3493(1)	6(1)	1.87
O(9)	7459(1)	4423(2)	6293(1)	7(1)	1.87
O(10)	5476(1)	2677(2)	5236(1)	6(1)	2.09

Table S1. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for YZnB₅O₁₀.U(eq) is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atoms	x/a	<i>y/b</i>	z/c	U(e q)	BVS
Gd(1)	4463(1)	6825(1)	2624(1)	5(1)	2.94
Zn(1)	9824(1)	5898(1)	8748(1)	7(1)	1.91
B (1)	7753(7)	4677(7)	5540(5)	5(1)	2.96
B(2)	5887(8)	6739(6)	6062(6)	4(1)	3.06
B(3)	10193(8)	6877(6)	5870(6)	5(1)	3.09
B(4)	11583(8)	4243(6)	7406(5)	5(1)	3.09
B(5)	6530(8)	8990(6)	4960(5)	5(1)	3.05
O(1)	7323(4)	5276(4)	6480(3)	5(1)	1.82
O(2)	9521(5)	3505(4)	6347(3)	5(1)	2.09
O(3)	5239(5)	7718(4)	4813(3)	4(1)	1.94
O(4)	6967(5)	7915(4)	7316(3)	5(1)	2.10
O(5)	11890(5)	4663(4)	8721(3)	6(1)	2.04
O(6)	10751(5)	8477(4)	5708(3)	6(1)	2.13
O(7)	6160(5)	9495(4)	3772(3)	7(1)	2.06
O(8)	5924(5)	3929(4)	4175(3)	5(1)	2.03
O(9)	8259(5)	6272(4)	5096(3)	7(1)	1.94
O(10)	11837(5)	5893(4)	6945(3)	6(1)	1.94

Table S2. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for GdZnB₅O₁₀.U(eq) is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Y(1)-O(9)	2.2444(12)	B(1)-O(5)	1.366(2)
Y(1)-O(9)#1	2.3124(12)	B(1)-O(1)	1.373(2)
Y(1)-O(6)#2	2.3598(12)	B(2)-O(4)	1.455(2)
Y(1)-O(10)#1	2.3637(12)	B(2)-O(3)	1.482(2)
Y(1)-O(1)#3	2.4024(12)	B(2)-O(2)	1.501(2)
Y(1)-O(5)#3	2.4768(12)	B(2)-O(8)#4	1.502(2)
Y(1)-O(3)#4	2.5545(12)	B(3)-O(5)	1.458(2)
Y(1)-O(3)#5	2.6678(12)	B(3)-O(6)	1.462(2)
Y(1)-O(2)#5	2.7034(12)	B(3)-O(4)	1.466(2)
Y(1)-O(8)#6	2.8689(12)	B(3)-O(7)	1.490(2)
Zn(1)-O(7)	2.0265(12)	B(4)-O(10)	1.454(2)
Zn(1)-O(1)#3	2.0318(13)	B(4)-O(3)#8	1.471(2)
Zn(1)-O(4)#4	2.0794(12)	B(4)-O(6)	1.474(2)
Zn(1)-O(1)#7	2.1374(12)	B(4)-O(8)	1.493(2)
Zn(1)-O(8)#4	2.1503(12)	B(5)-O(9)	1.337(2)
Zn(1)-O(6)#4	2.4731(12)	B(5)-O(7)	1.366(2)
B(1)-O(2)	1.359(2)	B(5)-O(10)	1.391(2)
O(9)-Y(1)-O(9)#1	151.341(13)	O(3)#4-Y(1)-O(8)#6	150.04(4)
O(9)-Y(1)-O(6)#2	75.74(4)	O(3)#5-Y(1)-O(8)#6	51.91(3)
O(9)#1-Y(1)-O(6)#2	75.65(4)	O(2)#5-Y(1)-O(8)#6	91.92(3)
O(9)-Y(1)-O(10)#1	142.01(4)	O(7)-Zn(1)-O(1)#3	113.01(5)
O(9)#1-Y(1)-O(10)#1	59.39(4)	O(7)-Zn(1)-O(4)#4	99.66(5)
O(6)#2-Y(1)-O(10)#1	122.09(4)	O(1)#3-Zn(1)-O(4)#4	86.88(5)
O(9)-Y(1)-O(1)#3	71.39(4)	O(7)-Zn(1)-O(1)#7	88.97(5)
O(9)#1-Y(1)-O(1)#3	125.44(4)	O(1)#3-Zn(1)-O(1)#7	79.57(5)
O(6)#2-Y(1)-O(1)#3	124.81(4)	O(4)#4-Zn(1)-O(1)#7	165.99(5)
O(10)#1-Y(1)-O(1)#3	111.02(4)	O(7)-Zn(1)-O(8)#4	93.34(5)
O(9)-Y(1)-O(5)#3	126.38(4)	O(1)#3-Zn(1)-O(8)#4	150.81(5)
O(9)#1-Y(1)-O(5)#3	71.57(4)	O(4)#4-Zn(1)-O(8)#4	101.39(5)
O(6)#2-Y(1)-O(5)#3	126.94(4)	O(1)#7-Zn(1)-O(8)#4	89.00(5)
O(10)#1-Y(1)-O(5)#3	72.62(4)	O(7)-Zn(1)-O(6)#4	141.42(5)
O(1)#3-Y(1)-O(5)#3	55.69(4)	O(1)#3-Zn(1)-O(6)#4	100.23(4)
O(9)-Y(1)-O(3)#4	92.93(4)	O(4)#4-Zn(1)-O(6)#4	62.00(4)
O(9)#1-Y(1)-O(3)#4	69.75(4)	O(1)#7-Zn(1)-O(6)#4	116.80(4)
O(6)#2-Y(1)-O(3)#4	56.89(4)	O(8)#4-Zn(1)-O(6)#4	61.21(4)
O(10)#1-Y(1)-O(3)#4	125.06(4)	O(2)-B(1)-O(5)	121.62(15)
O(1)#3-Y(1)-O(3)#4	81.73(4)	O(2)-B(1)-O(1)	125.69(16)
O(5)#3-Y(1)-O(3)#4	72.96(4)	O(5)-B(1)-O(1)	112.68(15)
O(9)-Y(1)-O(3)#5	68.59(4)	O(4)-B(2)-O(3)	113.94(14)
O(9)#1-Y(1)-O(3)#5	116.90(4)	O(4)-B(2)-O(2)	109.19(13)
O(6)#2-Y(1)-O(3)#5	96.93(4)	O(3)-B(2)-O(2)	103.05(13)
O(10)#1-Y(1)-O(3)#5	75.67(4)	O(4)-B(2)-O(8)#4	109.38(14)

Table S3. Bond lengths [Å] and angles [deg] for $YZnB_5O_{10.}$

_				
•	O(1)#3-Y(1)-O(3)#5	110.17(4)	O(3)-B(2)-O(8)#4	112.27(13)
	O(5)#3-Y(1)-O(3)#5	134.97(4)	O(2)-B(2)-O(8)#4	108.71(13)
	O(3)#4-Y(1)-O(3)#5	151.89(2)	O(5)-B(3)-O(6)	110.24(13)
	O(9)-Y(1)-O(2)#5	103.34(4)	O(5)-B(3)-O(4)	112.54(14)
	O(9)#1-Y(1)-O(2)#5	68.04(4)	O(6)-B(3)-O(4)	108.01(13)
	O(6)#2-Y(1)-O(2)#5	69.75(4)	O(5)-B(3)-O(7)	106.09(13)
	O(10)#1-Y(1)-O(2)#5	61.07(4)	O(6)-B(3)-O(7)	111.68(14)
	O(1)#3-Y(1)-O(2)#5	160.36(4)	O(4)-B(3)-O(7)	108.31(13)
	O(5)#3-Y(1)-O(2)#5	129.33(4)	O(10)-B(4)-O(3)#8	110.72(14)
	O(3)#4-Y(1)-O(2)#5	117.76(4)	O(10)-B(4)-O(6)	110.40(13)
	O(3)#5-Y(1)-O(2)#5	51.54(4)	O(3)#8-B(4)-O(6)	105.69(13)
	O(9)-Y(1)-O(8)#6	83.28(4)	O(10)-B(4)-O(8)	113.48(13)
	O(9)#1-Y(1)-O(8)#6	123.15(4)	O(3)#8-B(4)-O(8)	110.14(13)
	O(6)#2-Y(1)-O(8)#6	147.59(4)	O(6)-B(4)-O(8)	106.02(13)
	O(10)#1-Y(1)-O(8)#6	64.31(4)	O(9)-B(5)-O(7)	123.52(15)
	O(1)#3-Y(1)-O(8)#6	68.86(4)	O(9)-B(5)-O(10)	116.25(15)
	O(5)#3-Y(1)-O(8)#6	85.42(4)	O(7)-B(5)-O(10)	120.22(15)

Symmetry transformations used to generate equivalent atoms:

#1 -x+3/2,y+1/2,-z+3/2	#2 -x+1,-y+1,-z+1
#3 x+1/2,-y+3/2,z+1/2	#4 -x+3/2,y+1/2,-z+1/2
#5 x,y,z+1	#6 x+1/2,-y+1/2,z+1/2
#7 -x+3/2,y-1/2,-z+1/2	#8 x-1/2,-y+1/2,z+1/2
#9 -x+2,-y+1,-z+1	#10 x-1/2,-y+3/2,z-1/2
#11 -x+3/2,y-1/2,-z+3/2	#12 x,y,z-1
#13 x+1/2,-y+1/2,z-1/2	#14 x-1/2,-y+1/2,z-1/2

Table S4. Bond lengths [Å] and angles [deg] for $GdZnB_5O_{10.}$

Gd(1)-O(1)	2.2778(17)	B(1)-O(5)	1.472(3)
Gd(1)-O(1)#1	2.3580(17)	B(1)-O(4)	1.474(3)
Gd(1)-O(2)#1	2.4175(17)	B(1)-O(3)	1.487(3)
Gd(1)-O(5)#2	2.4201(18)	B(2)-O(1)	1.336(3)
Gd(1)-O(10)#3	2.4512(18)	B(2)-O(6)	1.365(3)
Gd(1)-O(7)#3	2.5124(17)	B(2)-O(2)	1.392(3)
Gd(1)-O(4)#2	2.5782(17)	B(3)-O(7)	1.459(3)
Gd(1)-O(4)#4	2.6358(17)	B(3)-O(8)	1.463(3)
Gd(1)-O(9)#5	2.6742(18)	B(3)-O(5)	1.467(3)
Gd(1)-O(3)#4	2.8841(17)	B(3)-O(6)	1.495(3)
Zn(1)-O(6)	2.0304(17)	B(4)-O(8)	1.453(3)
Zn(1)-O(10)#3	2.0491(18)	B(4)-O(4)#8	1.483(3)
Zn(1)-O(8)#6	2.0813(18)	B(4)-O(3)#6	1.496(3)
Zn(1)-O(10)#7	2.1147(18)	B(4)-O(9)	1.501(3)
Zn(1)-O(3)#6	2.1962(17)	B(5)-O(9)	1.359(3)
Zn(1)-O(5)#6	2.4216(18)	B(5)-O(7)	1.369(3)
B(1)-O(2)	1.456(3)	B(5)-O(10)	1.374(3)
O(1)-Gd(1)-O(1)#1	150.685(19)	O(4)#2-Gd(1)-O(3)#4	150.42(5)
O(1)-Gd(1)-O(2)#1	145.14(6)	O(4)#4-Gd(1)-O(3)#4	51.85(5)
O(1)#1-Gd(1)-O(2)#1	58.32(6)	O(9)#5-Gd(1)-O(3)#4	91.87(5)
O(1)-Gd(1)-O(5)#2	74.96(6)	O(6)-Zn(1)-O(10)#3	116.87(7)
O(1)#1-Gd(1)-O(5)#2	76.03(6)	O(6)-Zn(1)-O(8)#6	99.50(7)
O(2)#1-Gd(1)-O(5)#2	121.64(6)	O(10)#3-Zn(1)-O(8)#6	86.52(7)
O(1)-Gd(1)-O(10)#3	71.09(6)	O(6)-Zn(1)-O(10)#7	89.52(7)
O(1)#1-Gd(1)-O(10)#3	124.89(6)	O(10)#3-Zn(1)-O(10)#7	79.28(8)
O(2)#1-Gd(1)-O(10)#3	110.23(6)	O(8)#6-Zn(1)-O(10)#7	165.53(7)
O(5)#2-Gd(1)-O(10)#3	125.83(6)	O(6)-Zn(1)-O(3)#6	91.27(7)
O(1)-Gd(1)-O(7)#3	124.37(6)	O(10)#3-Zn(1)-O(3)#6	149.06(7)
O(1)#1-Gd(1)-O(7)#3	71.19(6)	O(8)#6-Zn(1)-O(3)#6	102.04(7)
O(2)#1-Gd(1)-O(7)#3	73.50(6)	O(10)#7-Zn(1)-O(3)#6	88.95(7)
O(5)#2-Gd(1)-O(7)#3	125.74(6)	O(6)-Zn(1)-O(5)#6	139.93(7)
O(10)#3-Gd(1)-O(7)#3	54.88(6)	O(10)#3-Zn(1)-O(5)#6	98.55(7)
O(1)-Gd(1)-O(4)#2	89.69(6)	O(8)#6-Zn(1)-O(5)#6	62.76(7)
O(1)#1-Gd(1)-O(4)#2	70.56(6)	O(10)#7-Zn(1)-O(5)#6	116.37(7)
O(2)#1-Gd(1)-O(4)#2	125.16(5)	O(3)#6-Zn(1)-O(5)#6	61.27(6)
O(5)#2-Gd(1)-O(4)#2	56.15(6)	O(2)-B(1)-O(5)	110.55(19)
O(10)#3-Gd(1)-O(4)#2	82.57(6)	O(2)-B(1)-O(4)	110.1(2)
O(7)#3-Gd(1)-O(4)#2	72.51(5)	O(5)-B(1)-O(4)	106.2(2)
O(1)-Gd(1)-O(4)#4	70.66(6)	O(2)-B(1)-O(3)	114.0(2)
O(1)#1-Gd(1)-O(4)#4	117.62(6)	O(5)-B(1)-O(3)	105.8(2)
O(2)#1-Gd(1)-O(4)#4	76.52(6)	O(4)-B(1)-O(3)	109.83(19)
O(5)#2-Gd(1)-O(4)#4	97.54(5)	O(1)-B(2)-O(6)	122.9(2)

O(10)#3-Gd(1)-O(4)#4	109.06(6)	O(1)-B(2)-O(2)	117.1(2)
O(7)#3-Gd(1)-O(4)#4	135.82(5)	O(6)-B(2)-O(2)	120.0(2)
O(4)#2-Gd(1)-O(4)#4	151.30(3)	O(7)-B(3)-O(8)	112.6(2)
O(1)-Gd(1)-O(9)#5	104.63(6)	O(7)-B(3)-O(5)	110.7(2)
O(1)#1-Gd(1)-O(9)#5	68.45(6)	O(8)-B(3)-O(5)	107.5(2)
O(2)#1-Gd(1)-O(9)#5	61.57(6)	O(7)-B(3)-O(6)	105.93(19)
O(5)#2-Gd(1)-O(9)#5	69.40(6)	O(8)-B(3)-O(6)	108.4(2)
O(10)#3-Gd(1)-O(9)#5	159.84(6)	O(5)-B(3)-O(6)	111.7(2)
O(7)#3-Gd(1)-O(9)#5	130.58(5)	O(8)-B(4)-O(4)#8	113.7(2)
O(4)#2-Gd(1)-O(9)#5	117.43(5)	O(8)-B(4)-O(3)#6	109.6(2)
O(4)#4-Gd(1)-O(9)#5	52.23(5)	O(4)#8-B(4)-O(3)#6	112.6(2)
O(1)-Gd(1)-O(3)#4	86.37(6)	O(8)-B(4)-O(9)	109.1(2)
O(1)#1-Gd(1)-O(3)#4	121.49(5)	O(4)#8-B(4)-O(9)	103.11(19)
O(2)#1-Gd(1)-O(3)#4	63.79(5)	O(3)#6-B(4)-O(9)	108.49(19)
O(5)#2-Gd(1)-O(3)#4	148.56(5)	O(9)-B(5)-O(7)	121.3(2)
O(10)#3-Gd(1)-O(3)#4	68.42(5)	O(9)-B(5)-O(10)	125.6(2)
O(7)#3-Gd(1)-O(3)#4	85.67(5)	O(7)-B(5)-O(10)	113.1(2)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1/2,y+1/2,-z+1/2	#2 -x+1,-y+1,-z+1
#3 x-1/2,-y+3/2,z-1/2	#4 x-1/2,-y+1/2,z-1/2
#5 x,y,z-1	#6 -x+1/2,y+1/2,-z+3/2
#7 -x+1/2,y-1/2,-z+3/2	#8 x-1/2,-y+1/2,z+1/2
#9 -x,-y+1,-z+1	#10 -x+1/2,y-1/2,-z+1/2
#11 x+1/2,-y+3/2,z+1/2	#12 x+1/2,-y+1/2,z+1/2
#13 x+1/2,-y+1/2,z-1/2	#14 x,y,z+1

Fig. S1. The picture is under a microscope of (a) $YZnB_5O_{10}$, (b) $GdZnB_5O_{10}$.

Fig. S2. Calculated and experimental XRD patterns of (a) YZnB₅O₁₀, (b) GdZnB₅O₁₀.

Fig. S3. (a) Cation coordination environment of Zn in the $YZnB_5O_{10}$ (b) Cation coordination environment of Y in the $YZnB_5O_{10}$.

