Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Supplementary data to

Tunable electronic properties and band alignments of InS-arsenene

heterostructure via external strain and electric field

Hui Yao,^{a,b} Chao Zhang,^c Qiang Wang,^a Jianwei Li,^a YunjinYu,^a Fuming

Xu,^{†a} Bin Wang^{*a} and Yadong Wei^a

^a Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

^b Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

^c Beijing Computational Science Research Center, Beijing, 100193, China.

E-mail address: binwang@szu.edu.cn; xufuming@szu.edu.cn; xufuming@szu.edu.cn; sufuming@szu.edu.cn; sufuming@szu.edu; sufuming@stu.edu; sufuming@stu.edu</

Supplementary Figures

Figure S1.(color online) Top and side views of InS-Aresenene vdWH with different stacking patterns. (a) The first As atom of upper aresenene layer align with S atom, (b) (a) The first As atom of upper aresenene layer align with In atom, (c) The first As atom of lower aresenene layer align with S atom, (d) The first As atom of lower aresenene layer align with In atom. The I stacking pattern has the lowest binding energy.

Figure S2.(color online) The left column : elastic modulus C_{2D} , and right column: deformation potential constant E_{DP} at different directions for isolated InS monolayer, arsenene monolayer and InS-arsenene vdWH.

Figure S3.(color online) The band structures of (a) InS monolayer, (b) aresenene(As) monolayer and (c) InS-As vdWH at HSE level. In each panel, the Fermi level is set to zero.

Figure S4. (color online) The projected band structures of InS-As vdWH under finite vertical strains (a) $\Delta d = -0.8$ Å, (b) $\Delta d = 0.4$ Å and (c) $\Delta d = 1.8$ Å at HSE level. In each panel, the Fermi level is set to zero.

Figure S5. (color online) The projected band structures of InS-As vdWH under finite in-plane strains (a) $\varepsilon = -8\%$, (b) $\varepsilon = 2\%$ and (c) $\varepsilon = 4\%$ at HSE level. In each panel, the Fermi level is set to zero.

Figure S6. (color online) The projected band structures of InS-As vdWH under finite electric fields (a) $E_{ext} = -0.5V / \mathring{A}$, (b) $E_{ext} = 0.6V / \mathring{A}$ and (c) $E_{ext} = 0.8V / \mathring{A}$ at PBE level and (d) $E_{ext} = -0.8V / \mathring{A}$, (e) $E_{ext} = 0.6V / \mathring{A}$ and (f) $E_{ext} = 0.8V / \mathring{A}$ at HSE level. In each panel, the Fermi level is set to zero.

