Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Efficient photocathode performance of Lithium ions doped LaFeO₃

nanorod array for hydrogen evolution

Yang Li, ^a Tao Wang,^{*a} Bin Gao, ^a Xiaoli Fan, ^b Hao Gong, ^a Hairong Xue, ^a Songtao Zhang, ^c Xianli Huang, ^a Jianping He,^{*a}

Figure S1. XRD pattern of LaFeO₃ film.

Figure S2. The top-view SEM images (a) and cross-view SEM (b) of β -FeOOH.

Figure S3. The top SEM images of (a) Li-LFO-1 and (b) Li-LFO-3.

Figure S4. The HR-TEM images of (a)(b) pristine LaFeO₃ and (c) Li-doped LaFeO₃.

Figure S5. XPS survey spectra (a) and high-resolution of La 3d (b), O 1s (c).

Figure S6. The chopped I-t curves at 0.4V vs. RHE for pristine and Li-doped LaFeO₃ for water reduction with N_2 bubbling.

Figure S7. The EIS curves in light of pristine and Li-doped $LaFeO_3$ photocathodes measured in a solution saturated with O_2 .

Figure S8. (a) XRD spectra, (b) XPS high-resolution spectra of La 3d, (c) XPS high-resolution spectra of Fe 2p and (d) peak fitting of Fe $2p_{3/2}$ of Li-LFO-2 photocathode.

hkl	2θ(°)	Q(up d)	D (nm)	Average
		p(rau)		crystallite size
(101)	22.660	0.380	22.34	
(121)	32.240	0.326	26.58	22.10 nm
(202)	46.200	0.448	20.20	
(240)	57.539	0.493	19.26	
Dahua Sahaman	$D_{hkl} = \frac{K\lambda}{\beta \frac{\pi}{180} \cdot \cos^2 \theta}$	 5 θ		

Table S1. The crystallite size calculated based on XRD information

 D_{hkl} is the grain diameter perpendicular to the crystal plane (hkl) direction. K is the Scherrer constant, and K = 0.943 (*cube grain*). λ is the incident X-ray wavelength, and $\lambda = 0.15406 nm$ (*Cu Ka*). θ is the Bragg diffraction angle. β is the half-width of the diffraction peak.

concentration of Li in drop-cast solution	atomic % of Li in LaFeO ₃
0.5 mM	0.75%
1.0 mM	3.8%
1.5 mM	5.7%

Table S2. LiNO $_3$ drop-cast solution concentrations and percentages of Lithium in the LaFeO $_3$ film

Photocathode and	Preparation	Potential	Current density	Reference
modification				
LaFeO ₃	Electrodeposition	0.4 V (vs. RHE)	-10µA·cm ⁻²	1
LaFeO ₃	magnetron	0 V (vs. RHE)	-25µA·cm ⁻²	2
	sputtering			
(NiP+P1*)@ LaFeO ₃	spray pyrolysis	0.6 V (vs. RHE)	$-20\mu A \cdot cm^{-2}$	3
Au/ LaFeO ₃	sol-gel	0.6 V (vs. RHE)	-20µA·cm ⁻²	4
Ni-LaFeO ₃	spray pyrolysis	0.6 V (vs. RHE)	-66µA·cm ⁻²	5
Li- LaFeO ₃	Hydrothermal	0.4 V (vs. RHE)	-50µA·cm ⁻²	This work
	template method			

Table S3. The photocurrents of the LaFeO₃ photocathodes for PEC water reduction in the literature.

Reference

- G. P. Wheeler, V. U. Baltazar, T. J. Smart, A. Radmilovic, Y. Ping, K. S. Choi, *Chem. Mater.*, 2019,**31**,5890-5899.
- [2] M. K. Son, H. Seo, M. Watanabe, M. Shiratani, T. Ishihara, Nanoscale, 2020, 12, 9653-9660.
- [3] F. Li, R. Xu, C. Nie, X. Wu, P. Zhang, L. Duan, L. Sun, Chem. Commun., 2019,55, 12940-12943
- [4] P. Wang, Y. He, Y. Mi, J. Zhu, F. Zhang, Y. Liu, Y. Yang, M. Chen, D. Cao, *RSC Adv.*, 2019,9, 26780-26786
- [5] G. S. Pawar, A. Elikkottil, B. Pesala, A. A. Tahir, T. K. Mallick, *Int. J. Hydrog. Energy*, 2019,44,578-586