Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Metal free, Selective thiolation of C(sp2)-H bond Functionalization via *in situ*-generated NHTS for Synthesis of Novel Sulfenylated 2-aminothiazole and Imidazothiazole

1. a) General procedure for the synthesis of 5-((1H-benzo[d]imidazol-2-yl)thio)-4-(4chlorophenyl)thiazol-2-amine (5a).

NCS (1.5 mmol) was taken in round bottom flask containing CH₃OH. To this same pot 1H-benzo[d]imidazole-2-thiol (**2a**) (**Scheme 2**) (2 mmol) was added slowly with constant stirring, and reaction mass was stirred at room temperature up to 5 minutes. As TLC indicate the formation of (NHTS). Furthermore to the same pot 4-(4chlorophenyl)thiazol-2-amine (2 mmol) was added with small proportions at a time and stirring was continued for another 20 minutes, as TLC indicate the completion of reaction. The reaction mass was poured on ice cold water, solid product separated out was filtered, dried and washed with aqueous ethanol. No further purification like column chromatography was needed.

(b) Spectral data of 5-((*1H-benzo[d]imidazol-2-yl*)*thio*)-4-(4-chlorophenyl)*thiazol-2-amine* (5*a*) pale yellow solid, mp 99-100 °C. FT-IR: 3462 (-NH₂), 1171 (C-S-C) cm⁻¹. ¹H-NMR (400 MHz, DMSO- d_6 ,) δ 12.54 (s, 1H), 7.87 (m, 2H), 7.72 (m, 2H), 7.48 (m, 4H), 7.16 (m 2H). ¹³C-NMR (400 MHz, DMSO- d_6) δ 171.06, 156.28, 150.20, 133.53, 133.20, 130.82, 128.60, 122.27, 114.77, 99.44, HRMS (ESI-TOF) m/z: [M+1] Calculated for C₁₆H₁₁ClN₄S₂: 358.0114, found 359.0183.

Calculated for C₁₆H₁₁ClN₄S₂: 358.0114, found 359.0183.

(c) Spectral data of 5-((*1H-benzo[d]imidazol-2-yl)thio*)-4-(4-bromophenyl)thiazol-2amine (5b) White solid, mp 110-111 °C. ¹H-NMR (400 MHz, DMSO-*d*₆,) δ 12.50 (s, 1H), 7.79-7.61 (m, 2H), 7.59 (m, 2H), 7.49-7.48 (m, 2H), 7.47 (m 2H), 7.19-7.17 (m 2H). ¹³C-NMR (400 MHz, DMSO-*d*₆) δ 171.20, 156.57, 150.30, 133.42, 131.54, 131.11, 122.62,

122.31, 114.69, 98.93. HRMS (ESI-TOF) m/z: [M+1] Calculated for $C_{16}H_{11}BrN_4S_2$: 401.9609, found 404.9672.

¹³C NMR

Calculated for C₁₆H₁₁BrN₄S₂: 401.9609, found 404.9672.

(d) Spectral data of 5-((1H-benzo[d]imidazol-2-yl)thio)-4-(p-tolyl)thiazol-2-amine (5c) White solid, mp 100-101 °C. ¹H-NMR (400 MHz, DMSO- d_6 ,) δ 12.47 (s, 1H), (m,

2H), 7.70-7.63 (m, 4H), 7.51-7.39 (m, 2H), 7.16 (m 4H), 2.28 (s 3H). 13 C-NMR (400 MHz, DMSO-*d*₆) δ 170.88, 157.74, 150.65, 138.36, 131.55, 129.09, 122.35, 122.00, 118.11, 111.32, 98.03, 21.30. HRMS (ESI-TOF) m/z: [M+1] Calculated for C₁₇H₁₄N₄S₂: 338.0660, found 339.0730.

Calculated for $C_{17}H_{14}N_4S_2$: 338.0660, found 339.0730.

(e) Spectral data of 5-((1H-benzo[d]imidazol-2-yl)thio)-4-(4-fluorophenyl)thiazol-2amine (*5d*) White solid, mp 112-113 °C. ¹H-NMR (400 MHz, DMSO-*d*₆,) δ 12.49 (s, 1H), 7.89-7.85 (m, 2H), 7.63 (m, 2H), 7.24-7.20 (m, 2H), 7.16-7.15 (m 2H), 7.14-7.13 (m 2H). ¹³C-NMR (400 MHz, DMSO-*d*₆,) δ 170.95, 163.67, 161.23, 156.57, 150.29, 144.45, 135.84, 131.27, 131.19, 130.88, 130.85, 122.38, 122.01, 118.20, 115.51, 115.30, 111.37,

98.84. HRMS (ESI-TOF) m/z: [M+1] Calculated for $C_{16}H_{11}FN_4S_2$: 342.0409, found 343.0470.

Calculated for C₁₆H₁₁FN₄S₂: 342.0409, found 343.0470.

2. a) General procedure for the synthesis of 4-(4-chlorophenyl)-5-((5-(pyridin-4-yl)-1,3,4oxadiazol-2-yl)thio)thiazol-2-amine (5e).

NCS (1.5 mmol) was taken in round bottom flask containing CH₃OH. To this same pot 5-(pyridin-4-yl)-1,3,4-oxadiazole-2-thiol (**2c**) (Scheme 2) (2 mmol) was added slowly with constant stirring, and reaction mass was stirred at room temperature up to 5 minutes.

As TLC indicate the formation of (NHTS). Furthermore to the same pot 4-(4-chlorophenyl)thiazol-2-amine (2 mmol) was added with small proportions at a time and stirring was continued for another 20 minutes, as TLC indicate the completion of reaction. The reaction mass was poured on ice cold water, solid product separated out was filtered, dried and washed with aqueous ethanol. No further purification like column chromatography was needed.

b) Spectral data of 4-(4-chlorophenyl)-5-((5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)thio)thiazol-2-amine (*5e*) White solid, mp 115-116 °C. ¹H-NMR (400 MHz, DMSO- d_6 ,) δ 8.81 (s, 2H), 7.83 (m, 6H), 7.49-7.48 (m, 2H). ¹³C-NMR (400 MHz, DMSO- d_6) δ 171.63, 164.63, 157.71, 151.43, 133.92, 132.62, 130.97, 130.50, 128.76, 120.48, 95.35. HRMS (ESI-TOF) m/z: [M+1] Calculated for C₁₆H₁₀ClN₅OS₂: 387.0015, found 388.0096.

Calculated for C₁₆H₁₀ClN₅OS₂: 387.0015, found 388.0096.

(c) Spectral data of 5-((1H-benzo[d]imidazol-2-yl)thio)-4-(4-bromophenyl)thiazol-2-amine (5f) White solid, mp 120-121 °C. ¹H-NMR (400 MHz, DMSO-d₆), δ 8.83 (s, 2H), 7.86-7.78 (m, 6H), 7.66 (m, 2H). ¹³C-NMR (400 MHz, DMSO-d₆) δ 171.69, 164.64,

164.33, 157.92, 150.98, 132.88, 131.27, 130.77, 130.42, 122.64, 120.12, 98.15. HRMS (ESI-TOF) m/z: [M+1] Calculated for C₁₆H₁₀BrN₅OS₂: 430.9510, found 433.9542.

¹H NMR

19

Calculated for C₁₆H₁₀BrN₅OS₂: 430.9510, found 433.9542.

(d) Spectral data of 5-((5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)thio)-4-(p-tolyl)thiazol-2-amine (*5g*) White solid, mp 118-119 °C. ¹H-NMR (400 MHz, DMSO-*d*₆) δ 8.81 (s, 2H), 7.81-7.71 (m, 6H), 7.23 (m, 2H), 2.31 (s, 3H). ¹³C-NMR (400 MHz, DMSO-*d*₆) δ 171.48,

164.82, 164.56, 159.21, 151.41, 138.74, 131.12, 130.49, 129.21, 120.43, 93.91, 21.35. HRMS (ESI-TOF) m/z: [M+1] Calculated for C₁₇H₁₃N₅OS₂: 367.0562, found 368.0643.

Calculated for C₁₇H₁₃N₅OS₂: 367.0562, found 368.0643.

(e) Spectral data of 4-(4-fluorophenyl)-5-((5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)thio)thiazol-2-amine (*5h*) White solid, mp 115-116 °C. ¹H-NMR (400 MHz, DMSO- d_6 ,) δ 8.82 (s, 2H), 7.83 (m, 6H), 7.28-7.27 (m, 2H). ¹³C-NMR (400 MHz, DMSO- d_6) δ

171.57,164.67, 163.88, 158.44, 131.48, 130.52, 130.35, 120.47, 115.73, 115.52, 94.54. HRMS (ESI-TOF) m/z: [M+1] Calculated for C₁₆H₁₀FN₅OS₂: 371.0311, found 372.0392.

Calculated for C₁₆H₁₀FN₅OS₂: 371.0311, found 372.0392.

(f) Spectral data of 4-phenyl-5-((5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)thio)thiazol-2amine (*5i*) White solid, mp 110-112 °C. ¹H-NMR (400 MHz, DMSO-*d*₆), δ 8.81 (s, 2H), 7.83-7.78 (m, 6H), 7.43-7.41 (m, 2H). ¹³C-NMR (400 MHz, DMSO-*d*₆) δ 171.57, 164.80,

164.60, 159.14, 133.82, 130.50, 129.21, 128.68, 120.48, 94.65. HRMS (ESI-TOF) m/z: [M+1] Calculated for C₁₆H₁₁N₅OS₂: 353.0405, found 354.0485.

¹H NMR

Calculated for C₁₆H₁₁N₅OS₂: 353.0405, found 354.0485.

3. Spectral data of *1-(6-(4-chlorophenyl)-3-methylimidazo[2,1-b]thiazol-2-yl)ethenone* ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.54 (s, 1H, =C-H), 7.89-7.87 (dd, 2H, Ar-H), 7.80-7.47 (dd, 2H, Ar-H), 2.81 (s, 3H, -CH₃), 2.58 (s, 3H, -CH₃). ¹³C NMR (100 MHZ, DMSO *d*₆): δ 190.77, 147.82, 147.25, 135.02, 132.87, 132.46, 128.84, 126.79, 125.24, 108.42, 29.73, 14.04.

¹³C NMR

4. a) General procedure for the synthesis of 1-(6-(4-chlorophenyl)-3- methylimidazo[2,1 b]thiazol-2-yl)ethanol (6a).

For the synthesis of 1-(6-(4-chlorophenyl)-3-methylimidazo[2,1-b]thiazol-2-yl)ethanolyl)ethanol (**6a**), 1-(6-(4-chlorophenyl)-3-methylimidazo[2,1-b]thiazol-2-yl)ethenone, (1mmol), was stirred in CH₃OH at room temperature for 1-2 hours in presence of NaBH₄ (1.5mmol) as reducing agent. After completion of reaction (monitored by TLC), the reaction mass was poured in ice cold water and neutralized with dilute HCl. The solid separated was filtered, dried and washed with cold methanol to furnish product as white amorphous solid.

b) Spectral data of *1-(6-(4-chlorophenyl)-3-methylimidazo[2,1-b]thiazol-2-yl)ethanol* (*6a*). white solid, mp 100-101 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.25 (s, 1H =C-H), 7.85 (s, 2H, Ar-H), 7.45 (s, 2H, Ar-H), 5.75 (s, 1H, >C-H), 5.08 (s, 1H, -OH), 2.38 (s, 3H, -CH₃), 1.38 (s, 3H, -CH₃). ¹³C NMR (100 MHZ, DMSO-*d*₆): δ 147.69, 144.75, 133.43, 131.96, 131.35, 128.72, 126.42, 122.07, 107.33, 62.47, 25.15, 11.61. HRMS (ESI-TOF) m/z: [M+1] Calculated for C₁₄H₁₃ClN₂OS: 292.0437, found 293.0522.

¹³C NMR

Calculated for C₁₄H₁₃ClN₂OS: 292.0437, found 293.0522.

5. a) General procedure for the synthesis of 1-(5-((1H-benzo[d]imidazol-2-yl)thio)-6-(4chlorophenyl)-3-methylimidazo[2,1-b]thiazol-2-yl)ethanol (7a).

NCS (1.5 mmol) was taken in round bottom flask containing CH₃OH. To this same pot 1H-benzo[d]imidazole-2-thiol (**2a**) (**Scheme 2**) (2 mmol) was added slowly with constant stirring, and reaction mass was stirred at room temperature up to 5 minutes. As TLC indicate the formation of (NHTS). Furthermore to the same pot 1-(6-(4chlorophenyl)-3-methylimidazo[2,1-b]thiazol-2-yl)ethanol (2 mmol), was added with small proportions at a time and stirring was continued for another 20 minutes, as TLC indicate the completion of reaction. The reaction mass was poured on ice cold water, solid
product separated out was filtered, dried and washed with aqueous ethanol. No further purification like column chromatography was needed.

b) Spectral data of 1-(5-((1H-benzo[d]imidazol-2-yl)thio)-6-(4-chlorophenyl)-3

methylimidazo[2,1-*b*]*thiazo*1-2-*y*1)*ethanol* (7*a*). white solid, mp 111-113 °C. FT-IR: 3177 (-OH), 1128 (C-S-C) cm⁻¹. ¹H-NMR (400 MHz, DMSO-*d*₆,) δ 12.63 (s, 1H), 7.93 (dd, 2H), 7.48 (m, 3H), 7.37 (s, 1H), 7.93 (dd, 2H), 5.86 (d, 1H), 5.07 (q, 1H), 2.46 (s, 3H), 1.37 (d, 3H). ¹³C-NMR (400 MHz, DMSO-*d*₆) δ 152.12, 151.64, 149.92, 144.40, 135.71, 133.56, 133.02, 132.31, 129.55, 128.45, 124.86, 122.18, 121.79, 118.09, 111.04, 103.89, 62.24, 25.13, 12.13. HRMS (ESI-TOF) m/z: [M+1] Calculated for C₂₁H₁₇ClN₄OS₂: 440.0532, found 441.7851.

IR Spectra

¹³C NMR

Calculated for C₂₁H₁₇ClN₄OS₂: 440.0532, found 441.7851.

(c) Spectral data of *1-(5-((1H-benzo[d]imidazol-2-yl)thio)-3-methyl-6-phenylimidazo[2,1-b]thiazol-2-yl)ethanol (7b)*. White solid, mp 115-117 °C. FT-IR: 3040 (-OH), 1146 (C-S-C) cm⁻¹. ¹H-NMR (400 MHz, DMSO-*d*₆) δ 12.60 (s, 1H), 7.89 (dd, 2H), 7.40 (m, 5H), 7.13 (m, 2H), 5.87 (s, 1H), 5.08 (m, 1H), 2.47 (s, 3H), 1.37(d, 3H). ¹³C-NMR

(400 MHz, DMSO-*d*₆) δ 153.02, 152.11, 150.38, 133.57, 132.68, 128.32, 128.20, 128.16, 124.91, 121.93, 103.43, 62.28, 25.08, 12.13. HRMS (ESI-TOF) m/z: [M+1] Calculated for C₂₁H₁₈N₄OS₂: 406.0922, found 407.0988.

IR

¹H NMR

¹³C NMR

Calculated for C₂₁H₁₈N₄OS₂: 406.0922, found 407.0988.

(d) Spectral data of *1-(5-((1H-benzo[d]imidazol-2-yl)thio)-6-(4-bromophenyl)-3-methylimidazo[2,1 b]thiazol-2-yl)ethanol (7c)*. White solid, mp 120-121 °C. ¹H-NMR (400 MHz, DMSO-*d*₆) δ 12.63 (s, 1H), 7.89-7.87 (dd, 2H), 7.63-7.61(dd, 2H), 7.52-7.50 (m, 1H), 7.38-7.37 (m, 1H), 7.15-7.12 (m, 2H), 5.88-5.87 (dd, 1H), 5.10-5.07 (q, 1H), 2.47 (s, 3H), 1.39-1.37 (d, 3H). ¹³C-NMR (400 MHz, DMSO-*d*₆) δ 151.74, 151.32, 149.94, 133.38, 132.99, 131.80, 130.11,

124.96, 122.02, 121.97, 104.42, 62.12, 25.47, 12.10. HRMS (ESI-TOF) m/z: [M+1] Calculated for C₂₁H₁₇BrN₄OS₂: 484.0027, found 485.0103.

¹H NMR

¹³C NMR

Calculated for C₂₁H₁₇BrN₄OS₂: 484.0027, found 485.0103.

(e) Spectral data of 1-(5-((1H-benzo[d]imidazol-2-yl)thio)-3-methyl-6-(p-tolyl)imidazo[2,1-b]thiazol-2

yl)ethanol (*7d*). White solid, mp 119-120 °C. ¹H-NMR (400 MHz, DMSO-*d*₆) δ 11.40 (s, 1H), 6.44-6.42 (m, 1H), 6.34-6.33 (m, 2H), 6.24-6.16 (m, 1H), 5.97-5.96 (m, 2H), 5.67-5.65 (m, 2H), 4.33 (s, 1H), 3.78 (s, 1H), 1.44 (s, 3H), 0.19-0.18 (d, 3H). ¹³C-NMR (400 MHz, DMSO-*d*₆) δ 148.81, 147.38, 146.04, 139.99, 133.02, 130.95, 127.81, 124.85, 124.00, 122.87, 120.22, 117.09, 117.43, 105.90, 98.63, 57.84, 20.04, 16.42, 7.44. HRMS (ESI-TOF) m/z: [M+1] Calculated for C₂₂H₂₀N₄OS₂: 420.1079, found 421.1155.

Calculated for $C_{22}H_{20}N_4OS_2$: 420.1079, found 421.1155.

(f) Spectral data of *1-(5-((1H-benzo[d]imidazol-2-yl)thio)-6-(4-fluorophenyl)-3-methylimidazo[2,1 b]thiazol-2-yl)ethanol (7e).* White solid, mp 112-113 °C. ¹H-NMR (400 MHz, DMSO- d_6) δ 12.65 (s, 1H), 7.92 (m, 2H), 7.47-7.38 (m, 2H), 7.24 (m, 2H), 7.13 (m, 2H), 5.92 (m, 1H), 5.07 (s, 1H), 2.45 (s, 3H), 1.37 (s, 3H). ¹³C-NMR (400 MHz, DMSO- d_6) δ 163.64, 161.22, 151.71, 150.18, 150.18, 133.13, 130.22, 124.97, 122.50, 118.27, 115.84, 115.63, 111.40, 103.82, 62.10, 25.42, 12.05. HRMS (ESI-TOF) m/z: [M+1] Calculated for C₂₁H₁₇FN₄OS₂: 424.0828, found 425.0907.

¹³C NMR

Calculated for C₂₁H₁₇FN₄OS₂: 424.0828, found 425.0907

6. a) General procedure for the synthesis of 1-(6-(4-chlorophenyl)-3-methyl-5-((5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)thio)imidazo[2,1-b]thiazol-2-yl)ethanol (7f).

NCS (1.5 mmol) was taken in round bottom flask containing CH₃OH. To this same pot 5-(pyridin-4-yl)-1,3,4-oxadiazole-2-thiol (**2c**) (Scheme 2) (2 mmol) was added slowly with constant stirring, and reaction mass was stirred at room temperature up to 5 minutes. As TLC indicate the formation of (NHTS). Furthermore to the same pot 1-(6-(4chlorophenyl)-3-methylimidazo[2,1-b]thiazol-2-yl)ethanol (2 mmol) was added with small proportions at a time and stirring was continued for another 20 minutes, as TLC indicate the completion of reaction. The reaction mass was poured on ice cold water, solid product separated out was filtered, dried and washed with aqueous ethanol. No further purification like column chromatography was needed.

(b) Spectral data of 1-(6-(4-chlorophenyl)-3-methyl-5-((5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)thio)imidazo[2,1-b]thiazol-2-yl)ethanol (*7f*). White solid, mp 117-118 °C. FT-IR: 3318 (-OH) cm⁻¹. ¹H-NMR (400 MHz, DMSO-*d*₆) δ 8.82-8.80 (m, 2H), 7.99-7.97 (m, 2H), 7.82-7.81 (m, 2H), 7.54-7.52 (m, 2H), 5.94-5.93 (d, 1H) (Exchangeable with D₂O), 5.15-5.13 (q, 1H), 2.63-2.54 (s, 3H), 2.51 (s, 3H), 1.41-1.39 (d, 3H). ¹³C-NMR (400 MHz, DMSO-*d*₆) δ 164.64, 164.02, 153.51,153.07, 150.77, 134.69, 133.07,131.12, 130.25, 129.58, 128.65, 125.03, 120.12, 99.75, 63.01, 24.69, 12.17. HRMS (ESI-TOF) m/z: [M+1] Calculated for C₂₁H₁₆ClN₅O₂S₂: 469.0434, found 470.0507.

IR

¹H NMR

¹H NMR (D₂O Exchange)

¹³C NMR

(c) Spectral data of *1-(3-methyl-6-phenyl-5-((5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)thio)imidazo[2,1-b]thiazol-2-yl)ethanol* (7g). White solid, mp 120-121 °C. ¹H-NMR (400 MHz, DMSO-*d*₆) δ 8.79 (s, 2H), 7.93-7.92 (m, 2H), 7.79 (m, 2H), 7.45-7.44 (m, 2H), 5.97 (s, 1H), 5.13 (s, 1H), 2.61 (s, 3H), 1.40-1.39 (d, 3H). ¹³C-NMR (400 MHz, DMSO-*d*₆) δ 164.80, 164.25, 153.38, 151.99, 151.35, 133.59, 133.19, 130.54, 128.91, 128.47, 125.07, 120.49, 100.97, 62.15, 25.47, 12.24. HRMS (ESI-TOF) m/z: [M+1] Calculated for C₂₁H₁₇N₅O₂S₂: 435.0824, found 436.0896.

¹H NMR

Calculated for C₂₁H₁₇N₅O₂S₂: 435.0824, found 436.0896.

(d) Spectral data of 1-(6-(4-bromophenyl)-3-methyl-5-((5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)thio)imidazo[2,1-b]thiazol-2-yl)ethanol (7h). White solid, mp 117-118 °C.
¹H-NMR (400 MHz, DMSO-d₆) δ 8.77-8.76 (d, 2H), 7.89-7.87 (d, 2H), 7.77-7.67 (d, 2H),

7.63-7.62 (d, 2H), 5.98-5.97 (d, 1H), 5.13-5.11 (m, 1H), 2.60 (s, 3H), 1.39-1.38 (d, 3H). ¹³C-NMR (400 MHz, DMSO- d_6) δ 148.65, 141.73, 133.28, 132.55, 132.42, 128.91, 123.79, 90.77, 62.17, 25.39, 13.03. HRMS (ESI-TOF) m/z: [M+1] Calculated for C₂₁H₁₆BrN₅O₂S₂: 512.9929, found 515.9980.

¹H NMR

Calculated for $C_{21}H_{16}BrN_5O_2S_2$: 512.9929, found 515.9980.

(e) Spectral data of *1-(3-methyl-5-((5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)thio)-6-(p-tolyl)imidazo[2,1-b]thiazol-2-yl)ethanol (7i)*. White solid, mp 115-116 °C. ¹H-NMR (400 MHz, DMSO-*d*₆) δ 8.82-8.81 (d, 2H), 7.84-7.81 (m, 4H), 7.28-7.27 (d, 2H), 5.92-5.91(d,

1H), (Exchangeable with D₂O), 5.15-5.13 (q, 1H), 2.62 (s, 3H), 2.34 (s, 3H), 1.41-1.39 (d, 3H). ¹³C-NMR (400 MHz, DMSO-*d*₆) δ 164.55, 164.36, 155.06, 152.93, 150.79, 138.72, 132.28, 130.32, 129.79, 129.17, 128.25, 125.26, 120.11, 99.20, 63.15, 24.65, 21.35, 12.20. HRMS (ESI-TOF) m/z: [M+1] Calculated for C₂₂H₁₉N₅O₂S₂: 449.0980, found 450.1044.

¹H NMR

¹H NMR (D₂O Exchange)

Calculated for C₂₂H₁₉N₅O₂S₂: 449.0980, found 450.1044.

(f) Spectral data of *1-(6-(4-fluorophenyl)-3-methyl-5-((5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)thio)imidazo[2,1-b]thiazol-2-yl)ethanol (7j)*. White solid, mp 111-112 °C. ¹H-NMR (400 MHz, DMSO-*d*₆) δ 8.79 (s, 2H), 7.97 (d, 2H), 7.80 (d, 2H), 7.29 (d, 1H), 5.97 (s, 1H),

5.12 (s, 1H), 2.61-2.51 (d, 3H), 1.39 (d, 3H). ¹³C-NMR (400 MHz, DMSO- d_6) δ 164.83, 164.12, 152.42, 151.97, 151.36, 133.66, 130.62, 130.55, 129.70, 125.06, 120.50, 115.97, 115.76, 100.96, 62.14, 25.46, 12.23. HRMS (ESI-TOF) m/z: [M+1] Calculated for C₂₁H₁₆FN₅O₂S₂: 453.0729, found 454.0800.

¹H NMR

Calculated for $C_{21}H_{16}FN_5O_2S_2$: 453.0729, found 454.0800

a) General procedure for the synthesis of 1-(5-(benzo[d]oxazol-2-ylthio)-3-methyl-6-(p-tolyl)imidazo[2,1-b]thiazol-2-yl)ethanol (7k).

NCS (1.5 mmol) was taken in round bottom flask containing CH₃OH. To this same pot benzo[d]oxazole-2-thiol (**2c**) (**Scheme 2**) (2 mmol) was added slowly with constant stirring, and reaction mass was stirred at room temperature up to 5 minutes. As TLC indicate the formation of (NHTS). Furthermore to the same pot 1-(6-(4-chlorophenyl)-3methylimidazo[2,1-b]thiazol-2-yl)ethanol (2 mmol) was added with small proportions at a time and stirring was continued for another 20 minutes, as TLC indicate the completion of reaction. The reaction mass was poured on ice cold water, solid product separated out was filtered, dried and washed with aqueous ethanol. No further purification like column chromatography was needed.

b) Spectral data of *1-(5-(benzo[d]oxazol-2-ylthio)-3-methyl-6-(p-tolyl)imidazo[2,1-b]thiazol-2-yl)ethanol (7k).* white solid, mp 115-116 °C. ¹H-NMR (400 MHz, DMSO-*d*₆,) δ 7.79-7.65 (m, 4H), 7.35-7.22 (m, 4H), 5.90 (s, 1H), 5.11-5.09 (m, 1H), 3.35 (s, 3H), 2.32 (s, 3H), 1.39-1.38 (m, 3H), 1.37. ¹³C-NMR (400 MHz, DMSO-*d*₆) δ 163.03, 153.19, 152.05, 151.77, 141.61, 138.28, 133.47, 130.54, 129.49, 128.18, 125.40, 124.85, 119.44, 111.15, 101.52, 62.09, 25.47, 21.30, 12.17.

8. a) General procedure for the synthesis of 1-((1H-benzo[d]imidazol-2yl)thio)pyrrolidine-2,5-dione (NHTS) (3a)

White solid, mp 60-61°C. ¹H-NMR (400 MHz, DMSO-*d*₆,) δ 13.44 (s, 1H), 7.76-7.32 (m, 4H), 2.51 (m, 4H). ¹³C-NMR (400 MHz, DMSO-*d*₆) δ 169.01, 142.68, 132.54, 131.60, 125.05, 123.36, 123.07, 112.61, 110.57.

¹H NMR

76

Computational details:

The geometries of all molecules including NHTS, intermediates found in this study and product 7a have been fully optimized at B3LYP/6-31+G(d,p) level without symmetry constraints by using Gaussian 16 software¹. The second order harmonic frequencies have been calculated and found with all positive values

to ensure them minima on their respective potential energy surfaces. The optimized geometries have been visualized and IR frequencies have been analyzed by using Gaussview 6 software².

Table S1	: The geometrica	l parameters of al	l the structures	obtained at	B3LYP/6-31+G(d,p) level.
----------	------------------	--------------------	------------------	-------------	---------------------------------

Molecule	Structure of molecule	Total Energy (a.u.)	Label	Bond length (A)	Label	Bond Angle (°)	Label	Frequency(cm ⁻¹)	Intensity(KM/M ole)
			(S15-N22)	1.746	15-N22)	01.4	(S15-N22)	645.81	33.2
			(S15-C7)	1.768	(C7-S	1((S15-C7)	605.88	7.1
		5798	(N22-C23)	1.400	22-C24)	3.2	(N22-C23)	1170.77	90.5
STHN		-1137.5503	(N22-C24)	1.422	(C23-N2	11	(N22-C24)	1170.77	90.5
			(C7-N12)	1.379	N14)		(C7-N12)	1387.21	50.3
			(C7-N13) (N12-H13)	1.314 1.015	(N12-C7-	113.5	(C7-N13) (N12-H13)	1458.38 3581.65	15.7 207.9

		(C15-S19)	1.852	(S19-C15-S17)	107.3	(C15-S19)	749.74	8.6
		(C24-O36)	1.444	(C24-036-C37)	115.3	(C24-036) str.	1054.71	46.6
	4	(C15-C24)	1.598	(S19-C15-C24)	117.5	(C15-C24) Str.	1085.26	163.0
Intermediate-1	-2568.385394	(C15-H16)	1.088	(S19-C15-H16)	106.1	(C15-H16) bend.	1294.97	9.111
		(C24-N18)	1.442	(C15-C24-N18)	109.9	(C24-N18) Str.	1054.71	46.6
		(O35-H52)	0.994	(H52-035-C33)	111.8	(035-H52) str.	3331.73	1191.8

			(S15-C16)	1.851	(S15-C16-S19)	114.0	(S15-C16) Str.	768.84	62.5
			(C17-036)	1.421	(C17-036-C37)	116.1	(C37-O36) Str.	1126.98	236.3
		6	(C16-C17)	1.586	(S15-C16-C17)	110.8	(C16-C17) str.	1126.98	236.3
Intermediate-2	Intermediate-2	-2207.7059896	(C16-S19)	1.832	(C17-C16-S19)	105.3	(C16-S19) str.	768.84	62.5
			(C16-H18)	1.086	(S15-C16-H18)	106.9	(C16-H18) bend.	1263.55	57.6
			(C17-N20)	1.449	(C16-C17-N20)	109.4	(C17-N20) str.	1062.28	41.3

			(S15-C16)	1.876	(S15-C16-S19)	109.8	(S15-C16) Str.	828.38	54.7
			(C17-036)	1.575	(C17-036-C37)	118.6	(C16-H18) rock.	1301.68	223.6
	ن ب ب ب ب		(C16-C17)	1.590	(S15-C16-C17)	115.2	(O36-H41) str.	3210.41 3214.19	338.6 254.4
Intermediate-3		-2208.05602881	(C16-S19)	1.827	(C17-C16-S19)	103.0			
			(C16-H18)	1.088	(S15-C16-H18)	107.5			
			(C17-N20)	1.408	(C16-C17-N20)	110.9			
			(036-H41)	1.000	(H41-036-C17)	107.5			

		(C16-C17)	1.526	(C17-C16-S15)	113.5	(C16-C17) Str.	1084.30	41.5
		(C16-S19)	1.847	(C17-C16-S19)	104.7	(C16-S19) Str.	760.44	36.4
4	62	(C17-N20)	1.321	(C16-C17-N20)	116.0	(C17-N20) Str.	1511.16	238.0
Intermediate-4	-2092.348751	(C16-H18)	1.100	(H18-C16-S19)	109.6	(C16-H18) Str.	3016.38	203.1
		(C17-C22)	1.440	(C16-C17-C22)	122.9	(C17-C22)	1326.97	442.9

7a			(C23-C16)	1.381	S15-C23-S18) (S15-C23-C16)	120.3 129.5	(C23-C16) str.	1502.29	109.0
	7347810	(C23-S18)	1.771	(C16-C23-S18) (109.5	(C23-S18) Str.	848.52	44.1	
		-209	(C16-N19)	1.382	(C23-C16-N19)	115.2	(C16-N19) str.	1361.38	114.8
			C24)	62	(C23-C16-C24)	127.1	C24)	.26	
			(C16-	1.47	(C24-C16-N19)	117.7	(C16-i str	1194)'L

Table S2: Optimized Geometry Cartesian Coordinates of all structures obtained at B3LYP/631+G(d,p) level

Sr.no	Molecule	Cartesian coordinates	S
1	NHTS	6 0	2.480005 -0.796902 0.083736
		6 0	2.268837 0.583005 -0.174774
		6 0	3.253065 1.548802 0.066242
		6 0	4.467599 1.089749 0.568384
		6 0	4.695081 -0.281834 0.827268
		6 0	3.712748 -1.236691 0.590832
		6 0	0.482817 -0.629654 -0.654193
		1 0	3.084862 2.602385 -0.133689
		1 0	5.262468 1.803220 0.764416
		1 0	5.659523 -0.590377 1.219130
		1 0	3.878500 -2.290610 0.788743
		7 0	0.982976 0.655483 -0.668649
		1 0	0.441592 1.467442 -0.946071
		7 0	1.339945 -1.524649 -0.218560
		16 0	-1.106959 -1.020671 -1.321996
		6 0	-3.885672 0.277147 1.338205
		6 0	-3.423747 1.607597 0.723396
		1 0	-4.945541 0.061288 1.178650
		1 0	-3.701397 0.212370 2.414772
		1 0	-4.206464 2.114393 0.150145
		1 0	-3.044956 2.326446 1.455096
		7 0	-2.161976 -0.149644 -0.236675
		6 0	-2.298788 1.243981 -0.232812
		6 0	-3.060740 -0.803605 0.649954
		8 0	-1.608187 2.015722 -0.872838
		8 0	-3.140699 -1.997436 0.799151
2	Intermediate-1	6 0	2.639122 2.941632 -0.619426
		6 0	1.808376 3.942119 -0.059675
		6 0	2.317033 5.113031 0.504182

	6	0	3.704884	5.260882	0.497262
	6	0	4.546858	4.276284	-0.059026
	6	0	4.029467	3.110618	-0.621714
	6	0	0.626964	2.234036	-0.855601
	1	0	1.671116	5.875208	0.929552
	1	0	4.144683	6.155446	0.927627
	1	0	5.621164	4.433656	-0.049369
	1	0	4.674926	2.354737	-1.057458
	7	0	0.518490	3.457137	-0.227346
	1	0	-0.335310	3.860098	0.128356
	7	0	1.867320	1.893733	-1.113583
	6	0	-0.225945	-0.395148	-1.276824
	1	0	0.754544	-0.373955	-1.748792
	16	0	-1.381145	-1.386122	-2.282146
	7	0	-1.328049	-1.976620	0.299819
	16	0	-0.840907	1.352110	-1.290676
	7	0	-3.119675	-2.921362	-0.886422
	1	0	-3.862950	-2.528588	-1.457499
	1	0	-3.463898	-3.234867	0.013851
	6	0	-2.002568	-2.144959	-0.773898
	6	0	-0.162127	-1.144653	0.132538
	6	0	-5.028597	1.538246	1.701421
	6	0	-6.099733	0.868658	0.826915
	1	0	-5.137758	1.334856	2.772012
	1	0	-4.968955	2.625444	1.585190
	1	0	-6.851539	0.314293	1.395128
	1	0	-6.633418	1.570128	0.178859
	7	0	-3.911845	0.017473	0.222407
	6	0	-5.286539	-0.107612	-0.044478
	6	0	-3.770220	0.886829	1.173511
	8	0	-5.752175	-0.896715	-0.846916
	8	0	-2.612884	1.228036	1.701315
	8	0	-0.195097	-0.114086	1.142151
	6	0	0.028607	-0.565058	2.489541

		1	0	-0.665376 -1.370961 2.746772
		1	0	1.060059 -0.902923 2.622692
		1	0	-0.154177 0.302847 3.125789
		6	0	1.140632 -1.952928 0.223513
		6	0	1.119139 -3.336914 0.425731
		6	0	2.380216 -1.303663 0.114008
		6	0	2.306471 -4.068318 0.517941
		1	0	0.166812 -3.846449 0.516776
		6	0	3.572569 -2.020541 0.208958
		1	0	2.418701 -0.231616 -0.057713
		6	0	3.524699 -3.401203 0.410600
		1	0	2.283075 -5.141606 0.671884
		1	0	4.528059 -1.514731 0.122690
		17	0	5.026029 -4.310932 0.528323
		1	0	-1.857688 0.730576 1.287907
3	Intermediate-2	6	0	-3.871203 1.120315 0.339541
		6	0	-4.703471 0.446281 -0.585786
		6	0	-6.065387 0.721323 -0.711109
		6	0	-6.586430 1.706748 0.130078
		6	0	-5.772253 2.387591 1.057194
		6	0	-4.411428 2.105431 1.174407
		6	0	-2.599874 -0.271542 -0.688927
		1	0	-6.695457 0.199263 -1.425035
		1	0	-7.642041 1.953206 0.066848
		1	0	-6.217016 3.147967 1.692138
		1	0	-3.780478 2.627590 1.886402
		7	0	-2.564665 0.648108 0.246735
		7	0	-3.856754 -0.445473 -1.232772
		1	0	-4.107324 -1.108975 -1.950079
		16	0	-1.245678 -1.229139 -1.290332
		6	0	0.011974 -0.656816 -0.059392
		6	0	1.442944 -1.252629 -0.396299
		1	0	0.000484 0.430546 -0.078184
		16	0	-0.336047 -1.181136 1.661472

		7	0	1.708095 -2.386124 0.465877
		6	0	0.936481 -2.432672 1.486273
		6	0	2.505860 -0.149642 -0.231034
		6	0	2.564465 0.887132 -1.174301
		6	0	3.404920 -0.137495 0.838736
		6	0	3.498806 1.915009 -1.055590
		1	0	1.880218 0.882383 -2.017674
		6	0	4.346730 0.886983 0.973571
		1	0	3.380893 -0.938148 1.569048
		6	0	4.384379 1.905380 0.024031
		1	0	3.541542 2.712483 -1.789429
		1	0	5.042813 0.890689 1.805259
		7	0	1.071515 -3.339403 2.501517
		1	0	0.253739 -3.568526 3.047547
		1	0	1.708609 -4.103746 2.319937
		17	0	5.568146 3.197429 0.182741
		8	0	1.371572 -1.660450 -1.755580
		6	0	2.495477 -2.390224 -2.254378
		1	0	2.627541 -3.326510 -1.705225
		1	0	2.268358 -2.597033 -3.301846
		1	0	3.415389 -1.796278 -2.191491
4	Intermediate-3	6	0	-3.448421 0.705781 -0.391885
		6	0	-4.238897 -0.072563 0.489314
		6	0	-5.486644 0.353421 0.956735
		6	0	-5.920057 1.598242 0.512613
		6	0	-5.143378 2.388567 -0.366547
		6	0	-3.906065 1.958948 -0.828873
		6	0	-2.344718 -1.094154 -0.031451
		1	0	-6.088273 -0.248760 1.629665
		1	0	-6.881600 1.973225 0.848179
		1	0	-5.529778 3.350649 -0.687005
		1	0	-3.312167 2.559080 -1.510148
		7	0	-2.274134 0.030681 -0.704056
		7	0	-3.495684 -1.221268 0.711104

		1	0	-3.745131 -2.007354 1.294686
		16	0	-1.133274 -2.388682 -0.064532
		6	0	0.371374 -1.503094 0.621970
		6	0	1.417616 -1.002129 -0.465125
		1	0	0.014860 -0.674650 1.231134
		16	0	1.356384 -2.656651 1.639966
		7	0	2.399559 -1.981655 -0.704932
		б	0	2.507173 -2.826236 0.270969
		6	0	1.929068 0.397784 -0.208516
		б	0	1.028992 1.474330 -0.118116
		6	0	3.299301 0.627626 -0.033008
		б	0	1.493924 2.758629 0.148426
		1	0	-0.034208 1.314782 -0.278809
		б	0	3.771670 1.911780 0.240620
		1	0	4.000585 -0.195019 -0.112653
		б	0	2.865521 2.969659 0.331627
		1	0	0.803460 3.592101 0.213878
		1	0	4.831999 2.090051 0.380159
		7	0	3.449882 -3.776489 0.340607
		1	0	3.437182 -4.490574 1.052789
		1	0	4.130599 -3.848756 -0.403237
		17	0	3.447991 4.577534 0.672965
		8	0	0.574220 -0.860929 -1.787593
		б	0	1.286576 -0.823286 -3.077068
		1	0	1.818694 -1.760637 -3.226037
		1	0	0.515397 -0.648712 -3.825908
		1	0	1.970127 0.020957 -3.017594
		1	0	-0.166664 -1.530419 -1.744885
5	Intermediate-4	6	0	3.282211 0.555601 -0.567702
		б	0	3.981057 0.373940 0.646964
		б	0	5.291943 0.814319 0.834585
		6	0	5.892152 1.451168 -0.250369
		6	0	5.208290 1.640098 -1.469975
		6	0	3.900275 1.197670 -1.647669

		6	0	1.937003 -0.468168 0.753614
		1	0	5.822331 0.671332 1.770450
		1	0	6.911711 1.810121 -0.153923
		1	0	5.717171 2.142214 -2.286430
		1	0	3.372922 1.340629 -2.584921
		7	0	1.995487 0.022759 -0.457743
		7	0	3.083289 -0.294456 1.480531
		1	0	3.265346 -0.637742 2.412842
		16	0	0.505471 -1.252955 1.462191
		6	0	-0.345589 -1.656356 -0.119323
		6	0	-1.811598 -1.233950 -0.146203
		1	0	0.243947 -1.143663 -0.893463
		16	0	-0.374365 -3.467668 -0.479658
		7	0	-2.693227 -2.211244 -0.258985
		6	0	-2.117685 -3.419426 -0.417536
		6	0	-2.229641 0.141756 -0.072655
		6	0	-3.605842 0.440457 0.099137
		6	0	-1.306000 1.208237 -0.207282
		6	0	-4.042185 1.752320 0.151341
		1	0	-4.316539 -0.371398 0.199937
		6	0	-1.743476 2.523037 -0.170043
		1	0	-0.249646 1.017161 -0.369037
		6	0	-3.107471 2.791995 0.015525
		1	0	-5.091806 1.983260 0.293316
		1	0	-1.041376 3.340787 -0.285994
		7	0	-2.872834 -4.498962 -0.546475
		1	0	-2.484273 -5.424630 -0.666697
		1	0	-3.880752 -4.393038 -0.533846
		17	0	-3.650377 4.434827 0.074205
6	7a	6	0	3.123438 -1.036023 -0.574974
		6	0	3.961771 -0.791791 0.540400
		6	0	5.301140 -1.186006 0.574936
		6	0	5.789759 -1.840613 -0.555635
		6	0	4.968142 -2.093408 -1.674537

	6	0	3.632831	-1.697657	-1.700149
	6	0	1.904659	-0.014744	0.860287
	1	0	5.936160	-0.994886	1.434705
	1	0	6.826313	-2.163423	-0.574141
	1	0	5.389557	-2.608875	-2.532284
	1	0	2.996642	-1.890453	-2.557856
	7	0	3.147541	-0.131068	1.448707
	1	0	3.418979	0.273868	2.332216
	7	0	1.843164	-0.549008	-0.333204
	16	0	0.573412	0.733082	1.779122
	6	0	-1.453461	1.435487	-0.083808
	6	0	-1.183484	3.539670	-0.762972
	16	0	0.251389	3.352408	0.231040
	7	0	-1.959301	2.490284	-0.819327
	7	0	-1.480353	4.722987	-1.387647
	1	0	-0.725022	5.358608	-1.597473
	1	0	-2.196746	4.653471	-2.098815
	6	0	-0.264516	1.692144	0.570587
	6	0	-2.230611	0.177753	-0.060171
	6	0	-3.633179	0.239965	0.000160
	6	0	-1.610181	-1.080079	-0.130434
	6	0	-4.402085	-0.922063	0.025348
	1	0	-4.120570	1.208725	0.028167
	6	0	-2.371867	-2.249400	-0.111379
	1	0	-0.532987	-1.147058	-0.241080
	6	0	-3.760632	-2.160662	-0.025644
	1	0	-5.483896	-0.869318	0.081295
	1	0	-1.890264	-3.219035	-0.175887
	17	0	-4.723687	-3.633957	0.001574

Table S3: First three vibrational frequencies obtained at B3LYP/6-31+G(d,p) level

Sr.no	Molecule	Frequencies (cm ⁻¹)	IR Intensity (KM/Mole)
1	NHTS	32.8585	1.0604
		38.4795	1.8192
		65.4810	1.6805
2	Intermediate-1	8.7058	0.2000
		19.6068	0.9536
		22.8512	0.3580
3	Intermediate-2	14.1242	0.7230
		21.1133	0.8494
		29.3789	0.5813
4	Intermediate-3	11.4077	1.7622
		21.6816	0.9774
		35.5339	1.3702
5	Intermediate-4	16.8384	0.2711
		27.6926	1.3219
		43.6896	3.0171
6	7a	16.6459	2.0015
		23.9034	0.6560
		37.6693	1.1543

References.

- Gaussian 16, Revision B.01, M. J. Frish, G. W. Truck, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, H. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmayloy J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fkunda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai. T. Vreven, K. Throssell, J. A. Montgomery, Jr. J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghayachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K.Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- GaussView, Version 6.1, Roy Denningron, A. K. Todd, M. M. John, Semichem Inc., Shawnee Mission, KS, 2016