Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

MOFs-derived fluorine and nitrogen co-doped porous carbon for integrated membrane in lithium-sulfur batteries

Xinzuo Fang, ^a Yu Jiang, ^b Kailong Zhang, ^{* c} Guang Hu, ^c and Weiwei Hu^c

^a School of Materials Engineering, Jiangsu University of Technology, Changzhou, 213001, P. R. China.

^b School of Chemistry and Environment Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, P. R. China.

^c Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, School of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, 223003, P. R. China.

Section 1. Materials and Instrumentation.

All chemicals were purchased and used without further purification: zinc nitrate hexahydrate (99 %), 2-methylimidazole (99 %), ammonium fluoride (99 %), Sulfur powder, N-methyl-2-pyrrolidone (NMP) and methanol (AR) were obtained from Energy Chemical (Shanghai, China). Super P and PVDF (HSV900) were bought from Lizhiyuan Store (Taiyuan city, Shanxi Province, China). Power X-ray diffraction (PXRD) were performed on Japan Rigaku DMax- γ A rotation anode X-ray diffractometer equipped with Cu K α radiation. Field-emission scanning electron microscopy (FE-SEM) were obtained on the Zeiss Supra 40 scanning electron microscopy (TEM) and elemental mapping were carried out on JEOL ARM-200F. Nitrogen sorption measurement was obtained from Micromeritics ASAP 2020 system at 77 K and analyzed by the conventional Brunauer–Emmett–Teller (BET) method. X-ray photoelectron spectroscopy (XPS) measurements were performed by using an ESCALAB 250 XPS spectrometer equipped with monochromatized Al K α (hv = 1486.7 eV) as excitation source.

Section 2. Material Synthesis

Preparation of ZIF-8 precursor

The ZIF-8 precursor was synthesized according to previous procedure with some modifications. Typically, $Zn(NO_3)_2 \cdot 6H_2O$ (1.68 g) was dissolved in 80 mL of methanol. Then 80 mL methanol dissolved with 3.70 g 2-methylimidazole was added to the above solution with vigorous stirring for 24 h. After centrifugation, washed thoroughly with methanol, and finally dried overnight at 50 °C, the ZIF-8 powder was obtained. Prior to use, the powder was further activated at 200 °C under vacuum for 24 h.

Preparation of F-N-C-1000

Typically, ZIF-8 powder (500 mg) was heated to 1000 °C with a heating rate of 5 °C min⁻¹ and pyrolyzed at 1000 °C for 2 h under N₂ atmosphere, and then cooled to room temperature naturally to obtain porous carbon materials N-C-1000. Then the N-

C-1000 was fluorided with NH_4F solution at 80 °C for 12 h. After washed thoroughly and dried at 120 °C, the products were obtained.

Modification of separator

The obtained F-N-C-1000 (80 mg), Super P (10 mg), and PVDF (10 mg) binder were dispersed in NMP to form homogeneous slurry. Then the slurry was coated on one side of a Celgard separator. The modified membrane was vacuum dried at 40 °C for 12 h. Finally, the modified membrane was punched into a disk with a diameter of 19 mm. The areal loading mass of F-N-C-1000 on the modified Celgard is about 0.5 mg cm⁻². Digital photo of F-N-C-1000 on the modified Celgard separators (top) and origin Celgard separators (bottom) are shown in Figure S7.

Preparation of S cathode

Melt-diffusion strategy was used to prepare S cathode. A mixture of Super P and S with a weight ratio of 4:6 was grounded in a mortar for 30 min and then heated in a quartz tube at 155 °C for 24 h to obtain S cathode. Then, Super P/S composite and PVDF (Arkema, HSV900) were mixed with a weight ratio of 9:1 to form homogeneous slurry with some N-Methyl pyrrolidone. The slurry was coated onto aluminum foil, and the coating aluminum foil were dried in a vacuum oven at 60 °C for 12 h and punched into discs of diameter 12 mm. The sulfur loading is about 1.2 mg cm⁻².

Section 3. Electrochemical Measurements.

Electrochemical measurements were carried out with coin-type 2016 half cells in an Ar filled glove box. The Li–S cell was assembled with S cathode, one piece of F-N-C-1000 modified membrane and lithium metal with 1 mol L⁻¹ LiTFSI dissolved in a mixture of DME and DOL (v/v =1/1) containing LiNO₃ (2 wt.%). The cells were cycled in the voltage range of 1.7 to 2.8 V. E/S (electrolyte/sulfur) ratio is about 0.02 mL mg⁻¹ for normal test. The cyclic voltammograms (CV) of the batteries were measured on a CHI600e potentiostat from 1.7 to 2.8 V at a scan rate of 0.1 mV s⁻¹. The electrochemistry impedance spectroscopy (EIS) were tested on CHI660e electrochemical workstation (100 kHz ~ 0.01 Hz) using an open circuit voltage.

Figure S1. N_2 sorption isotherms for ZIF-8 and F-N-C-1000 at 77 K.

Figure S2. The distributions of pore size for F-N-C-1000.

Figure S3. The powder X-ray diffraction of F-N-C-1000.

Figure S5. XPS survey spectrum of F-N-C-1000.

Figure S6. High-resolution XPS spectrum for C in F-N-C-1000.

Figure S7. Digital photo of F-N-C-1000 on the modified Celgard separators (top) and origin Celgard separators (bottom).

Figure S8. CV curves of Li-S cell constructed using various membranes.

Figure S9. The C-rate properties of Li–S cell with F-N-C-1000 membrane.

Figure S10. EIS tests of Li–S cell constructed using various membranes.