Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Vanadium substituted heteropolyacids (H_{3+m}PW_{12-m}V_mO₄₀) encapsulated into Fe₃O₄@UiO-66 magnetic core-shell microspheres as brilliant catalysts for oxidative desulfurization under oxygen

Chaowei Wang^a, Zhe Liu^a, Guangfa Hu^b, Ruimin Gao^b, Jianshe Zhao^{a*}

^a Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, Xi' an 710069, China

^b Research Institute of Shaanxi Yanchang Petroleum Group Corp. Ltd., Xi'an 710075, China

*Corresponding author. E-mail: jszhao@nwu.edu.cn

Fig. S1. FT-IR spectra of (a) the loading different HPA catalysts Fe₃O₄@UiO-66-HPA, and (b) the different HPA loading amount catalysts Fe₃O₄@UiO-66-PW₉V₃.

Fig. S2. XRD patterns of (a) the loading different HPA catalysts $Fe_3O_4@UiO-66-HPA$, and (b) the different HPA loading amount catalysts $Fe_3O_4@UiO-66-PW_9V_3$.

Fig. S3. The GC-MS analysis of the product extracted by CH₃CN after ODS.

Table S1. ICP data	a of different catalysts
--------------------	--------------------------

Catalyst	W (wt%)	V (wt%)	W/V (mol ratio)	HPA (wt%)
5 wt% Fe ₃ O ₄ @UiO-66-PW ₉ V ₃	2.81	0.26	2.99	4.68
10% wt% Fe ₃ O ₄ @UiO-66-PW ₉ V ₃	5.83	0.53	3.03	9.72
20% wt% Fe ₃ O ₄ @UiO-66-PW ₉ V ₃	11.54	1.06	3.02	19.23
30% wt% Fe ₃ O ₄ @UiO-66-PW ₉ V ₃	15.93	1.46	3.02	26.55
40% wt% Fe ₃ O ₄ @UiO-66-PW ₉ V ₃	20.50	1.88	3.01	34.16
After used 10 times	10.97	1.01	3.00	17.37

Table S2. The comparison between ODS results of different HPA based catalysts.

Catalyst	Oxidant	Temperature	Time	DBT conversion	Reference
		(°C)	(min)	(%)	
MoV/Zr/SBA	TBHP	60	75	98.5	S1
HPA-PMI _n ^a	H_2O_2	50	120	98.9	S2
[Co(BBPTZ)3][HPMo12O40] ^b	TBHP	50	480	99.16	S3
PTA@MIL-101(Cr)	H_2O_2	50	120	99	S4
Co-POM@MOF-199@MCM-41	O ₂	80	160	99.1	S5
$K_6 P_2 W_{18} O_{62} / GO$	air	60	300	96.10	S 6
Fe ₃ O ₄ @UiO-66-PW ₉ V ₃	O ₂	60	180	99.85	this work

^a This catalyst represents a porous nanoflower catalyst self-assembled from HPA and polyionene denominated poly(2, p-methylphenylionene) (PMI_n).

^b This catalyst says a cationic triazole-based MOF encapsulating HPA, BBPTZ=4,4-bis(1,2,4-triazol-1-ylmethyl)biphenyl].

Reference

S1 M. Chamack, A. Mahjoub and H. Aghayan, Chem. Eng. Res. Des., 2015, 94, 565-572.

S2 L. Zhang, S. Song and N. Yang, Ind. Eng. Chem. Res., 2019, 58, 3618-3629.

S3 X. Hao, Y. Ma and H. Zang, Chem. -Eur. J., 2015, 21(9), 3778-3784.

S4 X. Hu, Y. Lu and F. Dai, Microporous Mesoporous Mater., 2013, 170, 36-44.

S5 S. Li, J. Li and Y. Gao, Fuel, 2017, 197, 551-561.

S6 S. Dou and R. Wang, New J. Chem., 2019, 43, 3226-3235.