Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Information

Ruthenium macrocycles bearing pyridine bis(carboxamide): Synthesis, structure, and catalytic activity for hydrosilylation

Hiroki Sato,^a Tadashi Tsukamoto,^a Hiromitsu Sogawa,^{a,b} Shigeki Kuwata^a and Toshikazu Takata^{*a,c}

^aDepartment of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan ^bDepartment of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, 564-8680, Japan ^cGraduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan

Corresponding author: takatats@hiroshima-u.ac.jp

Content

- 1. Supplementary Schemes, Tables and Figures
- 2. X-ray crystallographic analysis
- 3. Reference

1. Supplementary Schemes, Tables and Figures

Scheme S1

ÒМе

ÒМе

Table S1. Detailed conditions for the synthesis of Ru(MC33)(CO)₂(H₂O)

entry	Ru south	solvent	additive	temp. / °C	time	result
1	RuCl2(PPh3)3	toluene	NEt3 (10 v/v%)	90	19 h	NR
2	RuCl2(dmso)4	2-ee	Cs2CO3 (2.0 equiv.)	90	19 h	NR
3	RuCl2(dmso)4	2-ee	KOAc (2.2 equiv.)	90	12 h	45% conv.
4	RuCl2(dmso)4	THF	LDA (2.4 equiv.)	0→60	7 h	NR
5	Ru3(CO)12	diglyme	none	140	17.5 h	13% conv.
6	Ru3(CO)12	DMF	none	140	8 days	40% conv.
7	Ru3(CO)12	DMF	none	140	2 days	50% conv., 10% yield
8	Ru3(CO)12	DMF	1,3,5-triaza-7- phosphaadamantane (1.1 equiv.)	140	3 days	54% conv.
9	Ru3(CO)12	2-ee	none	140	2 days	17% yield
10	Ru3(CO)12	2-ee	<i>p</i> -tolualdehyde (1.1 equiv.)	140	19 h	32% yield
11	Ru3(CO)12	2-ee	<i>p</i> -tolualdehyde (2.2 equiv.)	140	15.5 h	27% yield
12	Ru3(CO)12	2-ee	<i>p</i> -tolualdehyde (2.2 equiv.)	120	19 h	22% yield
13	Ru3(CO)12	2-ee	norbornene (1.1 equiv.)	140	2 days	35% conv.
14	Ru3(CO)12	2-ee	DIPEA (10 equiv.)	140	2 days	NR
15	Ru3(CO)12	2-ee	PPh3 (1.1 equiv.)	140	2 days	trace
16 ^a	Ru3(CO)12	2-ee	CO (1 atm.)	140	3 days	42 yield
17 ^a	Ru3(CO)12	2-ee	CO (1 atm.)	140	2 days	97 yield

^aThe Ru₃(CO)₁₂ and formed Ru(**MC33**)(CO)₂(H₂O) gradually decreased by heating, leading to the decrease of the yields by prolonging the reaction time.

	IR (cm ⁻¹)		X-ray						
compound	S	as	Ru1-N1 (Å)	Ru1-N2 (Å)	Ru1-N3 (Å)	C-O (Ax.) (Å)	C-O (Eq.) (Å)	∠N2Ru1N3 (°)	
Ru(MC33)(CO ₂) ₂ (H ₂ O)	2046	1977	2.031(3)	2.101(3)	2.104(4)	1.138(3)	1.151(5)	155.1(1)	
Ru(MC33)(CO ₂) ₂ (P1)	2060	1977	2.026(4)	2.126(4)	2.087(3)	1.120(6)	1.165(2)	154.5(1)	
Ru(AC)(CO ₂) ₂ (H ₂ O)	2046	1977	2.024(2)	2.112(2)	2.100(2)	1.146(3)	1.144(3)	155.3 8)	

Table S2. The bond lengths and angles of $Ru(MC33)(CO_2)_2(H_2O)$, $Ru(MC33)(CO_2)_2(P1)$, and $Ru(AC)(CO_2)_2(H_2O)$

Table S3. The bond lengths and angles of Ru(MC33)(CO)(P2)₂

	IR (cm ⁻¹)		X-ray					
compound		as	Ru1-N1/	Ru1-N2 /	Ru1-N3/	C44-O15 /	∠N2Ru1N3/	
	S		Ru2-N4 (Å)	Ru2-N5 (Å)	Ru2-N6 (Å)	C88-O30 (Eq.) (Å)	∠N5Ru2N6 (°)	
Bu(MC22)(CO)(D2)	1959	-	2.042(3) /	2.115(4) /	2.102(3) /	1.163(5) /	154.4(1) /	
Ru(IVIC35)(CO)(P2) ₂			2.048(4)	2.110(3)	2.125(3)	1.148(6)	153.5(1)	

Fig. S1. ¹H-NMR spectra of Ru(**MC33**)(CO)₂(H₂O) (500 MHz, DMSO-*d*₆, r.t.).

S6

Fig. S3. HSQC spectrum of $Ru(MC33)(CO)_2(H_2O)$ (DMSO- d_6).

Fig. S4. HMBC spectrum of $Ru(MC33)(CO)_2(H_2O)$ (DMSO- d_6).

Fig. S5. FT-IR spectrum of Ru(MC33)(CO)₂(H₂O).

Fig. S6. ESI-TOF-MS spectrum of $[Ru(MC33)(CO)_2+Na]^+$ (positive) (upper: found, bottom: calculated for $C_{33}H_{35}N_3NaO_{10}Ru$). Note that H_2O was dissociated from complex during MS measurement.

Fig. S7. ¹H-NMR spectra of Ru(**AC**)(CO)₂(H₂O) (500 MHz, DMSO-*d*₆, r.t.).

Fig. S8. ¹³C-NMR spectra of Ru(**AC**)(CO)₂(H₂O) (125 MHz, DMSO-*d*₆, r.t.).

Fig. S9. FT-IR spectrum of Ru(AC)(CO)₂(H₂O).

Fig. S10. ESI-TOF-MS spectrum of $[Ru(AC)(CO)_2+Na]^+$ (positive) (upper: found, bottom: calculated for $C_{25}H_{21}N_3NaO_6Ru$). Note that H_2O was dissociated from complex during MS measurement.

Fig. S11. VT-NMR spectra of Ru(**MC33**)(CO)₂(H₂O) (300 MHz, DMSO-*d*₆).

Fig. S12. VT-NMR spectra of $Ru(AC)(CO)_2(H_2O)$ (300 MHz, DMSO- d_6).

Fig. S13. ¹H-NMR spectra of Ru(MC33)(CO)₂(P1) (500 MHz, CDCl₃, r.t.).

Fig. S14. ¹³C-NMR spectra of Ru(Ru33)(CO)₂(P1) (125 MHz, CDCl₃, r.t.).

Fig. S15. ³¹P-NMR spectrum of Ru(MC33)(CO)₂(P1) (202 MHz, DMSO-*d*₆, r.t.).

Fig. S16. ESI-TOF-MS spectrum of $[Ru(MC33)(CO)_2(P1)+Na]^+$ positive) (upper: found, bottom: calculated for C₅₁H₅₀N₃NaO₁₀PRu).

Fig. S17. FT-IR spectrum of Ru(MC33)(CO)₂(P1).

Fig. S18. ¹H-NMR spectra of Ru(MC33)(CO)(P2)₂ (500 MHz, CDCl₃, r.t.).

Fig. S19. ¹³C-NMR spectra of Ru(MC33)(CO)(P2)₂ (125 MHz, CDCl₃, r.t.).

Fig. S20. ³¹P-NMR spectrum of Ru(MC33)(CO)(P2)₂ (202 MHz, CDCl₃, r.t.).

Fig. S21. ESI-TOF-MS spectrum of $[Ru(MC33)(CO)(P2)_2+Na]^+$ (positive) of (upper: found, bottom: calculated for $C_{44}H_{65}N_3NaO_{15}P_2Ru$)

Fig. S22. FT-IR spectrum of Ru(MC33)(CO)(P2)₂.

Fig. S23. ¹H-NMR spectra of $Ru(AC)(CO)_2(P1)$ (not isolated, crude product) (500 MHz, C_6D_6 , r.t.).

Fig. S24. ³¹P-NMR spectrum of $Ru(AC)(CO)_2(P1)$ (not isolated, crude product) (202 MHz, C₆D₆, r.t.).

Fig. S25. FT-IR spectrum of Ru(AC)(CO)₂(P1) (not isolated, crude product).

Fig. S26. ¹H-NMR spectra of Ru(AC)(CO)(P2)₂ (500 MHz, C₆D₆, r.t.).

Fig. S27. ¹³C-NMR spectra of Ru(AC)(CO)(P2)₂ (125 MHz, C₆D₆, r.t.).

Fig. S28. ³¹P-NMR spectrum of Ru(AC)(CO)(P2)₂ (202 MHz, C₆D₆, r.t.).

Fig. S29. FT-IR spectrum of Ru(AC)(CO)(P2)₂.

Fig. S30. UV-vis spectra of Ru complexes in DMSO.

Fig. S31. ¹H-NMR spectrum of *cis*-vinylsilane 2 (500 MHz, CDCl₃, r.t.).

Fig. S32. ¹H-NMR spectrum of *trans*-vinylsilane 3 (500 MHz, CDCl₃, r.t.).

Fig. S33. ¹H-NMR spectrum of *trans*-stylbene 4 (500 MHz, CDCl₃, r.t.).

2. X-ray Crystallographic Data

A single crystal of $Ru(MC33)(CO)_2(H_2O)$ was obtained by the recrystallization from water vapor diffusion into a DMF solution of the compound.

Crystal data of Ru(**MC33**)(CO)₂(H₂O): C_{34.3}H_{41.56}N_{3.65}O₁₁Ru, red prism, 0.19 × 0.05 × 0.05 mm³, triclinic, space group *P*-1 (#2), *a* = 10.629(4) Å, *b* = 12.451(4) Å, *c* = 15.252(5) Å, *a* = 68.755(18)°, *b* = 77.07(2)°, γ = 74.08(2)°, *V* = 1791.5(11) Å³, ρ_{calcd} = 1.450 g/cm³, *Z* = 2, 14821 reflections measured, *R*1 = 0.0490 [*I* > 2 σ (*I*)], and *wR*2 = 0.1229 (all reflections), GOF = 0.986.

A single crystal of Ru(**MC33**)(CO)₂(**P1**) was obtained by recrystallization from a benzene solution.

Crystal data of Ru(**MC33**)(CO)₂(**P1**): C₅₁H₅₂N₃O₁₁PRu, orange prism, 0.24 × 0.13 × 0.12 mm³, triclinic, space group *P*-1 (#2), *a* = 12.906(8) Å, *b* = 13.325(8) Å, *c* = 14.696(8) Å, *a* = 78.66(3)°, *b* = 73.19(3)°, γ = 84.04(3)°, *V* = 2369(2) Å³, ρ_{calcd} = 1.423 g/cm³, *Z* = 2, 19292 reflections measured, *R*1 = 0.0573 [*I* > 2 σ (*I*)], and *wR*2 = 0.1454 (all reflections), GOF = 0.896.

A single crystal of $Ru(MC33)(CO)(P2)_2$ was obtained by liquid-liquid diffusion crystallization (CH₂Cl₂/hexane = 1/9).

Crystal data of Ru(**MC33**)(CO)[**P2**]₂·2CH₂Cl₂·H₂O: C₄₆H₇₁Cl₄N₃O₁₆P₂Ru, yellow prism, 0.24 × 0.23 × 0.06 mm³, triclinic, space group *P*-1 (#2), a = 12.256(3) Å, b = 20.547(4) Å, c = 23.363(5) Å, $\alpha = 99.334(3)^\circ$, $\delta = 99.324(4)^\circ$, $\gamma = 98.5572(16)^\circ$, V = 5635(2) Å³, $\rho_{calcd} = 1.446$ g/cm³, Z = 4, 70352 reflections measured, *R*1 = 0.0761 [*I* > 2 σ (*I*)], and *wR*2 = 0.2095 (all reflections), GOF = 1.065.

A single crystal of Ru(**AC**)(CO)₂(dmf) was obtained by recrystallization from a DMF/water solution.

Crystal data of Ru(**AC**)(CO)₂(dmf)·DMF: C₂₈H₃₀N₄O₈Ru, yellow prism, 0.15 × 0.15 × 0.11 mm³, monoclinic, space group $P2_1/c$ (#14), a = 10.696(2) Å, b = 22.632(5) Å, c = 11.846(3) Å, $\beta = 102.617(3)^\circ$, V = 2798.4(10) Å³, $\rho_{calcd} = 1.547$ g/cm³, Z = 4, 22752 reflections measured, R1 = 0.0344 [$I > 2\sigma(I$)], and wR2 = 0.0905 (all reflections), GOF = 1.026.