Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Facile pyrolysis approach of folic acid-derived high graphite N-doped porous carbon

materials for the oxygen reduction reaction

Xuexia Liu^{a, b}, Shuaihui Li^b, Limin Liu^b, Zhijun Wang^{b, *}

^a College of Chemistry, Nanchang University, Nanchang, Jiangxi 330088, China

^b School of chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009,

China

Fig. S1 Scanning electron microscopy (SEM) images of (a, e and i) dC-750, (b, f and j) m-NC-650, (c, g and k) m-NC-850 and (d, h and l) m-NC-950.

Fig. S2 Nitrogen adsorption/desorption isotherms of (a) dC-750, (b) m-NC-650, (c) m-NC-850 and (d) m-NC-950.

Fig. S3 Pore-size distribution curves of (a) dC-750, (b) m-NC-650, (c) m-NC-850 and (d) m-NC-950.

Sample	$\mathbf{S}_{\mathrm{BET}}$	$\mathbf{S}_{langmuir}$	\mathbf{S}_{mic}	S _{mes}	V _{pore}	Daver
	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(m^3 g^{-1})$	(nm)
dC-750	58.36	253.40	0.00	58.36	0.059	4.367
m-NC-650	1044.01	1429.62	658.76	385.25	0.672	0.504
m-NC-750	1441.08	2213.75	652.27	788.81	1.024	0.524
m-NC-850	1955.80	3228.70	448.75	1507.05	1.522	3.204
m-NC-950	2378.79	4180.74	0.00	2378.79	2.207	2.000

Table S1 Pore characteristics of dC-750 and m-NC-T.

Fig. S4 (a) XPS survey spectra of as-prepared materials. (b) O 1s spectra of m-NC-750.

Fig. S5 EDX spectrum of (a) dC-750, (b) m-NC-650, (c) m-NC-750, (d) m-NC-850 and (e) m-NC-950.

Sample	Graphitic N	Pyrrolic N	Pyridinic N
	(atomic%)	(atomic%)	(atomic%)
dC-750	1.21	1.05	2.41
m-NC-650	1.27	2.85	3.55
m-NC-750	3.92	3.33	4.14
m-NC-850	-	-	-
m-NC-950	-	-	-

Table S2 The relative atomic ratios of the different types of N.

Sample	$E_{1/2}$ (V _{RHE})	$E_0 (V_{RHE})$
Pt/C	0.81	0.95
dC-750	0.53	0.66
m-NC-650	0.79	0.95
m-NC-750	0.82	0.96
m-NC-850	0.82	0.95
m-NC-950	0.78	0.91

Table S3 On-set and half-wave potential for Pt/C, dC-750 and m-NC-T at 1600 rpm in0.1 M KOH.

1			
Catalyst	$E_{1/2}$ (V _{RHE})	$E_0 (V_{RHE})$	References
m-NC-750	0.82	0.96	This work
PHNG-800	0.81	0.94	[1]
$N_{0.54}$ - Z_3/M_1 -900	0.824	0.94	[2]
NPC	0.86	0.94	[3]
Polymer-modified	0.7	0.87	[4]
FC-NH4Cl-800-1	0.85	0.94	[5]
Cu@NC-700	0.86	0.926	[6]
Cu ₃ P@NPPC-650	0.78	0.85	[7]
PFeC-900	0.71	0.95	[8]
NCNT 4	0.78	0.96	[9]
N-doped porous Carbon nanosheets	0.77	0.90	[10]
Porous carbon Nanofiber	0.79	0.88	[11]
N-Doped graphene	0.84	0.92	[12]
NPCN-900	0.78	0.92	[13]

Table S4 Comparison of the ORR performances for various N-doped carbon catalystsat 1600 rpm in 0.1 M KOH.

Fig. S6 (a) RRDE voltammogram curve of m-NC-750 at 1600 rpm. (b) Peroxide yield and (c) electron transfer numbers for m-NC-750.

Fig. S7 The Koutecky-Levich (K-L) plots of (a) dC-750, (b) m-NC-650, (c) m-NC-850 and (e) m-NC-950.

Fig. S8 Optimized atomic structures for O_2 , OOH*, O* and OH* intermediates absorbed on (a) pyridinic N, (b) pyrrolic N and (c) graphite N dopant carbon hybrid models of electrocatalytic ORR. Colour code: Gray, blue and red balls represent C, N and O atoms, respectively.

References

[1] L. Qin, R. M. Ding, H. X. Wang, J. H. Wuu, C. H. Wang, C. H. Zhang, Y. Xu, L.
C. Wang, B. L. Lv, *Nano Research*, 2017, **10**, 305-319.

[2] X. G. Li, B. Y. Guan, S. Y. Gao, X. W. Lou, *Energy Environ. Sci.*, 2019, **12**, 648-655.

[3] H. Han, Y. Noh, Y. Kim, W. S. Jung, S. Park, W. B. Kim, *Nanoscale*, 2019, 11, 2423-2433.

[4] Y. H. Yu, Z. P. Zhang, L. M. Dai, F. Wang, Chem. Eur. J., 2019, 25, 5652-5657.

[5] J. Y. Zhu, D. Xu, C. C. Wang, W. J. Qian, J. Guo, F. Yan, *Carbon*, 2017, 115, 1-10.

[6] X. D. Wen, H. Qi, Y. Cheng, Q. Q. Zhang, C. M. Hou, J. Q. Guan, *Chin. J. Chem.*, 2020, **38**, 941-946.

[7] R. Wang, X. Y. Dong, J. Du, J. Y. Zhao, S. Q. Zang, *Adv. Mater.*, 2018, **30**, 1703711.

[8] N. Norouzi, F. A. Choudhury, H. M. El-Kaderi, ACS Appl. Energy Mater., 2020, 3, 2537-2546.

[9] Z. Y. Xu, Z. Y. Zhou, B. Y. Li, G. F. Wang, P. W. Leu, J. Phys. Chem. C, 2020, 124, 8689-8696.

[10] H. J. Yu, L. Shang, T. Bian, R. Shi, G. I. N. Waterhouse, Y. F. Zhao, C. Zhou, L.
Z. Wu, C. H. Tung, T. Zhang, *Adv. Mater.*, 2016, 28, 5080-5086.

[11] W. Zhang, Z. Y. Wu, H. L. Jiang, S. H. Yu, J. Am. Chem. Soc., 2014, 136, 14385-14388.

[12] H. B. Yang, J. W. Miao, S. F. Hung, J. A. Chen, H. B. Tao, X. Z. Wang, L. P. Zhang, R. Chen, J. J. Gao, H. M. Chen, L. M. Dai, B. Liu, *Sci. Adv.*, 2016, 2, e1501122.
[13] H. Jiang, Y. Q. Wang, J. Y. Hao, Y. S. Liu, W. Z. Li, J. Li, *Carbon*, 2017, 122, 64-73.