Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

## Electronic Supplementary Material (ESI) for New Journal of Chemistry.

## **Electronic Supplementary Material (ESI)**

## UltraSensitive Fe<sup>3+</sup> ion detection based on pH-insensitive fluorescent graphene nanosensors in strong acid and neutral media

Songlin Chen<sup>a</sup>, Yajing Huang<sup>a</sup>, Yang Yang<sup>a</sup>, Fanghua Luo<sup>a</sup>, Qinghua Zhao<sup>ab</sup>, Guohua Chen<sup>ab\*</sup>

<sup>a</sup>College of Materials Science and Engineering, Huaqiao University, Jimei Road 668, 361021 Xiamen, P.R.China E-mail: hdcgh@hqu.edu.cn

<sup>b</sup>Graphene Powder & Composite Research Center of Fujian Province, Jimei Road 668, 361021 Xiamen, P.R.China



Figure S1: The dispersion pattern of FRGO in acetone from 0.1 to 500 mg/ml and the dispersion pattern of FRGO in different solvents at 0.5 mg/ml



Figure S2: Fluorescence intensity at 475 nm upon excitation at 375 nm as a function of pH.



Figure S3: Fluorescence intensity at 475 nm upon excitation at 375 nm as a function of pH.



Figure S4: SEM image of FRGO



Figure S5: The excitation spectrum of FRGO and the UV–vis absorption spectra of Fe³+, Cu²+, Fe²+, Na+, Ni²+.



Figure S6: Time-dependent fluorescence change of the FRGO in the presence of Fe $^{3+}$  20 $\mu$ M.



Figure S7: UV-Vis changes of the FRGO (0.03mg/ml) and that after adding of  $Fe^{3+}$  (2mM).



Figure S8: The relative FL ratio of FRGO in the absence and presence of various anion ions at a concentration of 0.2 mM.



Figure S9: (A) Fluorescence spectra of FRGO solution with different concentrations of  $Cu^{2+}$  at pH = 7; (B) The comparison of the obtained  $(F_0-F)/F_0$  for the detection of  $Cu^{2+}$  at pH = 7

Table S1 RGO and FRGO, with C, N, and O contents (%) obtained from XPS analysis.

| Sample | C 1s  | N 1s | O 1s  |
|--------|-------|------|-------|
| RGO    | 84.16 | 0    | 15.84 |
| FRGO   | 81.98 | 5.77 | 12.25 |

Table S2 C 1s XPS deconvolution fitting results. All values are in percent

| Sample | C=C   | C-O(C-N) | C-C   | C=O  |  |
|--------|-------|----------|-------|------|--|
| RGO    | 67.45 | 8.58     | 21.34 | 2.64 |  |
| FRGO   | 44.75 | 27.8     | 22.01 | 6.42 |  |

Table S3 The value of residual weight (%) at 800°C and loss of 5% of the value of decomposition temperature (°C).

| Sample | The weight residual of 800 °C (%) | The decomposition temperature of 5 % (°C) |  |  |
|--------|-----------------------------------|-------------------------------------------|--|--|
| RGO    | 69.8                              |                                           |  |  |
| FRGO   | 38.6                              | 168                                       |  |  |

Table S4 Detection of Fe<sup>3+</sup> ions in river water samples.

|        | Concentration(nM) |        |    |                               |       |    |           |    |
|--------|-------------------|--------|----|-------------------------------|-------|----|-----------|----|
|        |                   | Found  | by | Recovery <sup>a</sup> by ICP- | Found | by | Recoverya | by |
| Sample | Added             | ICP-MS |    | MS(%)                         | FRGO  |    | FRGO(%)   |    |
| 1      | 0                 | 35.45  |    |                               | 33.80 |    |           |    |
|        |                   |        |    |                               |       |    |           |    |
| 2      | 10                | 45.27  |    | 98.2                          | 44.00 |    | 102.0     |    |

 $<sup>^{</sup>a}$ Recovery = (determined  $C_{metal ion}$  of spiked sample - determined  $C_{metal ion}$  of non-spiked sample)/added value × 100%.