Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Exploring Binding plus Cleavage activities of Nickel ${ }^{\mathrm{II}}$ complexes towards DNA and Proteins

Manish Kumar ${ }^{\text {a }}$, Neetika Lal ${ }^{\text {b }}$, Pratibha Mehta Luthra ${ }^{\text {b }}$ and Dhanraj T. Masram ${ }^{\text {a }}$ *
${ }^{a}$ Department of Chemistry, University of Delhi, Delhi-110007, India

${ }^{\mathrm{b}}$ Dr. B.R. Ambedkar Centre for Biomedical Research, University Of Delhi Delhi-110007, India

Supplementary material file

[^0]
TABLE OF CONTENTS

1. Experimental Details S5
1.1. Materials and Apparatus S5
1.2. Synthetic procedure of mixed ligands Nickel(II) complexes. S5,S6
1.3. X-ray crystallographic techniques S6,S7
1.4. DNA binding and DNA cleavage studies S7
1.5. Proteins binding and Proteins cleavage studies S7
1.6. In vitro cytotoxicity Assays S7
2. Bioassays S7
2.1. Stern-Volmer equation for SAs quenching studies S7,S8
2.2. Scatchard equation for SAs quenching studies S8
2.3. Calculation of binding parameters ($\Delta \mathrm{H}^{0}, \Delta \mathrm{~S}^{0}$ and $\Delta \mathrm{G}^{0}$) S8
2.4. CD spectroscopy S8,S9
2.5. DNA binding study S9
2.6. Stern-Volmer equation for EtBr competitive study S9
2.7. Apparent binding constant ($K_{\text {app }}$) S10
3. Supporting Tables and Figures
Table S1 Crystallographic Data and Structure Refinement parameters for complexes 1a-1c.S10
Table S2 Selected bond distances and angles for complex 1a S11
Table S3 Selected bond distances and angles for complex 1b S11
Table S4 Selected bond distances and angles for complex 1c S11
Table S5 Hydrogen bonding interactions in the structures of the complexes 1a-1c.S12
Table S6 Protein-binding constant $\left(K_{b}\right)$, number of binding sites per albumins (n) andrelative thermodynamic parameters ($\Delta G^{o}, \Delta S^{0}$ and ΔH^{0}) of the interaction of Ni (II)complexes with SAs at different temperatures (25,30 and $35^{\circ} \mathrm{C}$)S12
Table $\mathbf{S 7}$ The proteins binding constant $\left(K_{b}\right)$ values for $\mathrm{Ni}^{\mathrm{II}}$ complexes reported S13,S14
Table S8 The binding parameters [\% hypochromism ($\Delta \varepsilon$), DNA binding constants (\boldsymbol{K}_{b}),Gibbs free energy $\left(\Delta G^{o}\right)$, Stern-Volmer constant ($K_{S V}$) and apparent binding constant$\left.\left(K_{\text {app }}\right)\right]$ of complexes $\mathbf{1 a - 1} \mathbf{c}$.S14
Table S9 DNA-binding constant (K_{b}) and Stern-Volmer quenching constant ($K_{s v}$) values for nickel complexes reported S14-S16
Table S10 Cathodic and Anodic Potentials (in V) for the Redox Couple $\mathrm{Ni}^{\mathrm{II}} / \mathrm{Ni}^{1}$ in ${ }^{1 / 2}$DMSO: buffer Solution of the Complexes in the Absence as well as Presence of CTDNAS16
Fig. S1 Crystal packing representations of the complexes 1a-1c. S16
Fig. S2 Intermolecular hydrogen bonding interactions in complex 1a leading to the formation of cage-like structure S17
Fig. S3 Intermolecular hydrogen bonding interactions in complex 1b leading to the formation of chain structure S17
Fig. S4 Intermolecular hydrogen bonding interactions in complex 1c leading to theformation of cage-like structure.S18
Fig. S5 FT-IR spectrum of complexes 1a-1c S18
Fig. S6 The stability plots of complexes (a) $\left[\mathrm{Ni}(\mathrm{nal})_{2} \mathrm{bpy}\right] \mathbf{1 a}$, (b) $\left[\mathrm{Ni}(\mathrm{nal})_{2}\right.$ phen] 1b and (c)[$\left.\mathrm{Ni}(8-\mathrm{Hq})_{2} \mathrm{bpy}\right], \mathbf{1 c}$ in different time periodsS19
Fig. S7 The Stern-Volmer plots for the quenching of BSA $(20 \mu \mathrm{M})$ by the complexes (a)
1a, (b) 1b and (c) 1c at three different temperatures (25,30 and $35^{\circ} \mathrm{C}$). (d) UV/Visabsorption spectrum of BSA (black dashed line) in the presence of complexes (otherlines)S19
Fig. S8 The Stern-Volmer plots for the quenching of HSA $(20 \mu \mathrm{M})$ by the complexes (a)1a, (b) 1b and (c) 1c at three different temperatures $\left(25,30\right.$ and $35^{\circ} \mathrm{C}$). (d) UV/Visabsorption spectrum of HSA (black dashed line) in the presence of complexes (otherlines)S20
Fig. S9 Scatchard plots of BSA at different temperature for complexes 1a-
1c. S20
Fig. S10 Scatchard plots of HSA at different temperature for complexes 1a-1c.S21Fig. S11 The van't Hoff graphs for the binding of (a) BSA and (b) HSA for complexes 1a-Fig. S12 Synchronous fluorescence spectra of free BSA and HSA in the presence of theincreasing concentrations of complexes $\mathbf{1 a}$ at $\Delta \lambda=15$ and 60 nm . Arrows (\downarrow) show that theintensity changes upon increasing concentrations of thecomplexes... . 22Fig. S13 Synchronous fluorescence spectra of free BSA and HSA in the presence of theincreasing concentrations of complexes $\mathbf{1 b}$ at $\Delta \lambda=15$ and 60 nm . Arrows (\downarrow) show that theintensity changes upon increasing concentrations of the
complexes S23
Fig. S14 Three dimensional (3D) fluorescence spectra of (a) BSA (b) BSA + 1a (c) BSA$+\mathbf{1 b}$ and (d) $\mathrm{BSA}+\mathbf{1 c}$. Concentrations of $\mathrm{BSA}=10 \mu \mathrm{M}$ and $\mathbf{1 a}-\mathbf{1 c}=10$$\mu$ M..S24Fig. S15 Three dimensional (3D) fluorescence spectra of (a) HSA (b) HSA + 1a (c) HSA$+\mathbf{1 b}$ and (d) HSA + 1c. Concentrations of $\mathrm{HSA}=10 \mu \mathrm{M}$ and $\mathbf{1 a - 1 \mathbf { c }}=10 \mu \mathrm{M} \ldots \ldots \mathrm{S} 24$Fig. S16 SDS-PAGE diagram of bovine serum albumin (BSA, $15 \mu \mathrm{M}$) and human serumalbumin (HSA, $15 \mu \mathrm{M}$) incubated with various concentrations of complexes $\mathbf{1 c}$ in thepresence of $\mathrm{H}_{2} \mathrm{O}_{2}(100 \mu \mathrm{M})$ in buffer solution $(150 \mathrm{mM} \mathrm{NaCl}$ and 15 mM trisodium citrateat pH 7.2)S25Fig. S17 UV absorbance spectra of CT DNA in a buffer solution containing 150 mM NaCland 15 mM trisodium citrate at pH 7.4 in the absence as well as the presence of the diverseconcentration of complexes (a) 1a, (b) $\mathbf{1 b}$ and (b) 1c. The arrows (\downarrow) illustrations thechanges occur upon the addition of increasing amounts ofcomplexes... 525
Fig. S18 Absorption spectra of complexes (a) $\mathbf{1 b}$ and (c) $\mathbf{1 c}$ upon the titration of CT DNA in 5 mM trisodium citrate $/ 150 \mathrm{mM} \mathrm{NaCl}$ buffer. The arrows (\downarrow) display the decreases in absorbance with respect to an increase in the concentration of CT DNA solution (in all).S25
Fig. S19 CD spectrum of free CT DNA solution (black dashed lines) or in the presence of the increasing concentration of complexes (a) 1a, (b) $\mathbf{1 b}$ and (c) $\mathbf{1 c}$ (other solid lines). (d) The effect of the increasing concentration of complexes $\mathbf{1 a}$ (blue line), $\mathbf{1 b}$ (green line), and $\mathbf{1 c}$ (pink line) on the relative viscosity $\left(\eta / \eta_{0}\right)^{1 / 3}$ of CT DNA at room temperature.......S26
Fig. S20 Cyclic voltammogram of $0.5 \mathrm{mM} 1 / 2$ DMSO: buffer Solution of complex $1 \mathbf{c}$ in the absence as well as in the presence of CT DNA solution. Scan rate $=100 \mathrm{mVs}^{-1}$ (Supporting electrolyte $=$ buffer solution) .S26,S27
Fig. S21 Stern-Volmer quenching plots of EtBr bound to CT DNA for complexes 1a1c. .S27
Fig. S22 Gel electrophoresis images of SC plasmid pBR322 DNA incubated with different concentrations of complexes $\mathbf{1 a - 1} \mathbf{c}$ in the presence of activator-like $\mathrm{H}_{2} \mathrm{O}_{2}$ for 1 h at $37^{\circ} \mathrm{C}$. Form I, II and III represents the supercoiled (SC), nicked circular and linear forms of DNA4. References.S27-S29

1. Experimental Details

1.1.Materials and Apparatus

Nalidixic acid, 2,2'-bipyridine (=bpy), 1,10-phenanhroline (=phen), 8-hydroxyquinoline (=8$\mathrm{Hq}), \mathrm{NaOH}, \mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaCl}$, trisodium citrate, CT DNA, $\mathrm{EtBr}, \mathrm{BSA}$ and HSA were purchased from Sigma-Aldrich Co., and supercoiled plasmid DNA (pBR322), Agarose, Acrylamide/Bis-acrylamide, sodium lauryl sulphate (sodium dodecyl sulphate, SDS), ammonium per sulphate (APS), $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}-$ Tetramethylethylenediamine (TEMED) was purchased from SRL Diagnostics. All the chemicals and solvents used in the present study were reagent grade and used without any further purification. Doubly distilled water was used to prepare the buffer solutions and the pH was maintained by titration with 0.1 M NaOH solution. Microanalysis for carbon, hydrogen and nitrogen was carried out using a GMBH Vario EL-III spectrometer analyzer. Fourier-transform infrared (FT-IR) spectrum was performed on Thermo Fisher FT-IR spectrometer (NICOLET iS50). The UV/Vis absorption spectra were recorded in solution on a LABINDIA UV/VIS spectrophotometer (UV-3092) using a quartz cells of 1 cm path length. The magnetic properties of synthesized complexes were studied using vibrating sample magnetometer (VSM) (Microsense, Model ADE-EV9) at room temperature in the applied field of 15 kOe . All fluorescence measurements were performed on a Cary Eclipse Fluorescence spectrophotometer. The viscosity measurements of the samples were acquired on an ALPHA L Fungilab rotational viscometer device at room temperature (rt). Circular dichroism spectra of the complexes with CT DNA as well as proteins solution were obtained with a JASCO CD-Spectropolarimeter (J-815) with 150W Xe lamp under nitrogen flush at $25^{\circ} \mathrm{C}$. Electrochemical measurements were carried out on a CHI604D electrochemical analyzer in a 30 mL three-electrode electrolyte cell. The melting point (mp) of complexes were acquired with a Lab India melting point tool.

1.2. Synthetic procedure of mixed ligands Nickel(II) complexes

Synthesis of [$\mathbf{N i}(\text { nal })_{2} \mathbf{b p y}$], 1a: A warm methanol solution containing nalidixic acid (Hnal = $\left.\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}\right)(187 \mathrm{mg}, 0.8 \mathrm{mmol})$ and $\mathrm{NaOH}(16 \mathrm{mg}, 0.4 \mathrm{mmol})$ was continuously stirred until a clear solution was obtained. Afterwards, a methanolic solution of $\mathrm{Ni}\left(\mathrm{OCOCH}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(100$ $\mathrm{mg}, 0.4 \mathrm{mmol}$) was simultaneously added to the solution mixture and a light green color solution was formed. After 1 h stirring, a solution of bpy ($63 \mathrm{mg}, 0.4 \mathrm{mmol}$) was dropwise added and then the reaction mixture was refluxed for 2 h at $60^{\circ} \mathrm{C}$. After the completion of
reaction the resultant solution was filtrated to remove any solid impurities and vapour diffusion technique was used for growing crystals. After 5-6 days, green crystals of 1a were collected that is suitable for X-ray structure determination. Yield: $70 \%(0.19 \mathrm{~g}), \mathrm{mp}: 310-312^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{NiO}_{6}$, requires: $\mathrm{C}, 60.29 ; \mathrm{H}, 4.46$; $\mathrm{N}, 12.41$. found: $\mathrm{C}, 60.17 ; \mathrm{H}, 4.42 ; \mathrm{N}$, 12.37. FT-IR resonances: $\left(v_{\max }, \mathrm{cm}^{-1}\right) ;(\mathrm{C}=\mathrm{O})_{\mathrm{py}} 1619(\nu s) ;\left(\mathrm{CO}_{2}\right)_{\mathrm{a}} 1563(\mathrm{~s}) ;\left(\mathrm{CO}_{2}\right)_{\mathrm{s}} 1351(\mathrm{~s}) ; \Delta$ value $=212 \mathrm{~cm}^{-1}$. Electronic spectrum $\left[\lambda_{\max }, \mathrm{nm}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)\right]$: (in DMSO) $262(40,921)$, 318(29,300).

Synthesis of [$\left.\mathbf{N i}(\mathbf{n a l})_{2} \mathbf{p h e n}\right], \mathbf{1 b}$: This complex was synthesized following the above procedure used for 1a, except that 1,10-phenanthroline (phen $\left.=\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)(72 \mathrm{mg}, 0.4 \mathrm{mmol})$ was used in place of 2,2'-bipyridine ligand (bpy $=\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}$). Light green colored crystals of $\mathbf{1 b}$ obtained in the reaction mixture which is suitable for X-ray structure determination. Yield: 70\% (0.19 g), mp : $306-308^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{NiO}_{6}$, requires: C, $61.65 ; \mathrm{H}, 4.31 ; \mathrm{N}, 11.98$. found: C, 61.47; H, 4.22; N, 11.67. FT-IR resonances: $\left(v_{\text {max }}, \mathrm{cm}^{-1}\right)$; $(\mathrm{C}=\mathrm{O})_{\text {py }} 1610(v s) ;\left(\mathrm{CO}_{2}\right)_{\mathrm{a}} 1549$ (s); $\left(\mathrm{CO}_{2}\right)_{\mathrm{s}} 1336(\mathrm{~s}) ; \Delta$ value $=213 \mathrm{~cm}^{-1}$. Electronic spectrum $\left[\lambda_{\max }, \mathrm{nm}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)\right]$: (in DMSO) $262(37,672), 325(12,738)$.

Synthesis of $\left[\mathbf{N i}(\mathbf{8 - H q})_{\mathbf{2}} \mathbf{b p y}\right]$, $\mathbf{1 c}$: To a solution of $\mathrm{Ni}\left(\mathrm{OCOCH}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(100 \mathrm{mg}, 0.4 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ were added the 8 -hydroxyquinlone $\left(8-\mathrm{Hq}=\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}\right)(116 \mathrm{mg}, 0.8 \mathrm{mmol})$ and the reaction mixture was refluxed for 1 h . After that a solution of 2,2'-bipyridine ligand (bpy $=\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}$) ($63 \mathrm{mg}, 0.4 \mathrm{mmol}$) was simultaneously added and further refluxed for 1 h . After the completion of reaction, the mixture was allowed to cool at rt and then filtrated to remove any solid particles and kept for slow evaporation of the methanol solution. Dark brown crystals of $\mathbf{1 c}$ were found to be suitable for X-ray structure studies. Yield: $70 \%(0.19 \mathrm{~g}), \mathrm{mp}$: 258-260 ${ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{NiO}_{2}$, requires: C, $66.84 ; \mathrm{H}, 4.01 ; \mathrm{N}, 11.13$. found: C, 66.77; H, 3.92; N, 11.07. FT-IR resonances: $\left(v_{\max }, \mathrm{cm}^{-1}\right)$; (C-N) $1572(v s)$. Electronic spectrum $\left[\lambda_{\max }, \mathrm{nm}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)\right]:($ in DMSO $) 262(24,194), 297(10,482), 335(3,160) 407(2,308)$.

1.3. X-ray crystallographic

Suitable single crystals of complexes with appropriate dimensions of $0.08 \times 0.06 \times 0.05 \mathrm{~mm}^{2}$ in 1a, $0.14 \times 0.09 \times 0.05 \mathrm{~mm}^{2}$ in $\mathbf{1 b}$ and $0.22 \times 0.19 \times 0.12 \mathrm{~mm}^{2}$ in $\mathbf{1 c}$ were selected using microscope and mounted on a Mitgen Cryoloop in a random angle. The crystallographic data of complexes were carried out by using an Oxford XCalibur CCD diffractometer equipped with graphite monochromatic Mo K α radiation $(\lambda=0.71073 \AA) .{ }^{1}$ The structures of complexes were solved by direct methods of ShelXT with the help of Olex2 program and refined by ShelXL 2018/3. ${ }^{2}$

All non-hydrogen atoms were refined anisotropically and located H -atoms at their expected position to the carbon atoms in complexes ($\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{1 c}$) by using riding-hydrogen model. The molecular graphics and data analysis of bond angles, bond lengths and intermolecular interactions were done with Mercury and Platon programs. ${ }^{3}$ The crystallographic data collection as well as the structural refinement data for complexes $\mathbf{1 a - 1 c}$ are summarized in Supporting Information Table S1.

1.4. DNA binding and DNA cleavage studies

All of the experiments involving binding and cleavage activities of compounds with CT DNA were carried out by using the procedure as described by us previously. ${ }^{4}$

1.5. Proteins binding and Proteins cleavage studies

The proteins binding and cleavage studies of compounds were carried out by employing the procedure as described by us previously. ${ }^{4}$

1.6. In vitro cytotoxicity assay

Cytotoxicity studies of the complexes $\mathbf{1 a - 1 \mathbf { c }}$ along with standard drug cisplatin were carried out on human lung cells (A-549) and human breast cells (MCF-7) using the MTT assay method. ${ }^{5}$ The A-549 and MCF-7 cancer cells were grown in Dulbecco's Modified Eagle Medium (DMEM) containing 10% fetal bovine serum (FBS) along with $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin and 100 units per mL penicillin at $37^{\circ} \mathrm{C}$ under a humidified atmosphere of 5% CO_{2}. For the screening test, the cells were seeded in a 96 -well cell culture plates and incubated at $37{ }^{\circ} \mathrm{C}$ for 24 h under a conditions of $5 \% \mathrm{CO}_{2}, 95 \%$ air and 100% relative humidity prior to the addition of complexes. The complexes 1a-1c were dissolved in DMSO and again diluted in the respective medium containing 1% FBS. After that, the cells were treated with changing concentrations of complexes and incubated at $37^{\circ} \mathrm{C}$ for 24 h . After 24 h , the MTT ($0.5 \mu \mathrm{~g} / \mathrm{mL}$) was added to each well for 4 h incubation. The medium with MTT was then flicked off and formation of formazans which dissolved in $100 \mu \mathrm{~L}$ DMSO. The absorbance was then recorded at 540 nm with a reference wavelength of 690 nm . The IC_{50} values of the compounds were determined by using the graph of the percentage (\%) of survival cells versus the concentrations $(\mu \mathrm{g} / \mathrm{mL})$ of the complexes. ${ }^{6,7}$ Triplication was maintained, and the medium not containing the complexes served as the control.

2. Bioassays

2.1. Stern-Volmer equation for SAs quenching studies

To obtain a deep insight into the quenching progression ,the values of Stern-Volmer quenching $\left(\mathrm{K}_{\mathrm{SV}}, \mathrm{M}^{-1}\right)$ and the quenching constant $\left(\mathrm{k}_{\mathrm{q}}, \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ for the interaction of complexes $\mathbf{1 a - 1} \mathbf{c}$ with SAs have been evaluated according to Stern-Volmer eqn S1. ${ }^{8,9}$

$$
\begin{equation*}
\mathrm{I}_{\mathrm{o}} / \mathrm{I}=1+\mathrm{K}_{\mathrm{SV}}[\mathrm{Q}]=1+\mathrm{k}_{\mathrm{q}} \tau_{0}[\mathrm{Q}] \tag{eq.S1}
\end{equation*}
$$

Herein, Ksv $\left(\mathrm{M}^{-1}\right)$ represents the Stern-Volmer quenching and it is obtained by the slope of the diagram $\mathrm{I}_{0} / \mathrm{I}$ vs $[\mathrm{Q}]$, I and I_{o} denoted the fluorescence intensities of SAs in the bound of the complexes and in the free form respectively, [Q] is the concentration of the complexes. The value of quenching rate constant $\left(\mathrm{kq}, \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ was obtained according to the eqn S 2 .

$$
\begin{equation*}
K_{S V}=k_{q} \tau_{0} \tag{eq.S2}
\end{equation*}
$$

Herein, τ_{0} is the average lifetime of SAs in the absence of the quencher and taking at $10^{-8} \mathrm{~s}$.

2.2. Scatchard equation for SAs quenching studies

According to the Scatchard eqn S3. ${ }^{10}$

$$
\begin{equation*}
\left.\log \left[\mathrm{I}_{0}-\mathrm{I}\right) / \mathrm{I}\right]=\log \mathrm{K}_{\mathrm{b}}+n \log [\mathrm{Q}] \tag{eq.S3}
\end{equation*}
$$

the values SAs binding constant $\left(\mathrm{K}_{\mathrm{b}} \mathrm{M}^{-1}\right)$ and the number of binding sites per albumins (n) were calculated from the slope and intercept in the linear plots of $\log \left[\left(\mathrm{I}_{0}-\mathrm{I}\right) / \mathrm{I}\right]$ versus $\log [\mathrm{Q}]$.

2.3. Calculation of binding parameters ($\Delta \mathbf{H}^{\mathbf{0}}, \Delta \mathbf{S}^{\mathbf{0}}$ and $\Delta \mathbf{G}^{\mathbf{0}}$)

The enthalpy change $\left(\Delta H^{o}\right)$ and entropy change (ΔS^{o}) can be calculated according to the van't Hoff eqn S4. ${ }^{11,12}$

$$
\begin{equation*}
\log \mathrm{K}_{\mathrm{b}}=-\frac{\Delta \mathrm{H}^{\mathrm{o}}}{2.303 \mathrm{RT}}+\frac{\Delta \mathrm{S}^{\mathrm{o}}}{2.303 \mathrm{R}} \tag{eq.S4}
\end{equation*}
$$

Herein, K_{b} is the binding constant at different temperature, R is the ideal gas constant and T represents the experimental temperature (25,30 and $35^{\circ} \mathrm{C}$). The values of ΔH^{o} and ΔS^{o} were obtained from the linear plots of $\log \mathrm{K}_{\mathrm{b}}$ versus1/T. If the temperature were slightly changes, the enthalpy change $\left(\Delta H^{o}\right)$ can be regarded as a constant. The free energy change $\left(\Delta G^{o}\right)$ can be evaluated by making use of the binding constants at three different temperatures according to the following eqn S5.

$$
\begin{equation*}
\Delta G=-R T \ln K=\Delta H^{o}-T \Delta S^{o} \tag{eq.S5}
\end{equation*}
$$

2.4. CD spectroscopy

The α-helix (\%) content of free SAs and in the presence of complexes $\mathbf{1 a}-1 \mathbf{c}$ were calculated at 224 nm by the following eqn S6. ${ }^{13,14}$

$$
\begin{equation*}
M R E_{224}=\text { observed } C D(m \mathrm{deg}) / C_{P} \times n \times l \times 10 \tag{eq.S6}
\end{equation*}
$$

Here, C_{P} is the proteins (BSA/HSA) concentration in moles dm^{-1}, n is the number of amino acid residues (583 for BSA and 585 for HSA) and l is the path length of the cell $(1 \mathrm{~cm})$.

The percentage (\%) of Helicity was calculated from the mean MRE value observed at 224 nm , according to the following eqn S7.

$$
\begin{equation*}
\alpha-\text { helix }(\%)=-M R E_{224}-4000 / 33000-4000 \times 100 \tag{eq.S7}
\end{equation*}
$$

Here, $M R E_{224}$ represents the mean residue elasticity (in deg cm ${ }^{2} \mathrm{dmol}^{-1}$) values in observed at $224 \mathrm{~nm}, 4000$ represents is the MRE value of the β-form and random coil conformation at 224 nm , and 33000 is the value of MRE of a pure α-helix at 224 nm .

2.5. DNA binding study

The binding constants (K_{b}) were determined from the titration results by the Wolf-Shimer eqn S8. ${ }^{15}$

$$
\begin{equation*}
[D N A] /\left(\varepsilon_{A}-\varepsilon_{f}\right)=[D N A] /\left(\varepsilon_{A}-\varepsilon_{f}\right)+1 / K_{b}\left(\varepsilon_{b}-\varepsilon_{f}\right) \tag{eq.S8}
\end{equation*}
$$

Where, [DNA] is the concentration of DNA in base pair, ε_{b} is the absorption coefficient of the complexes fully bounded to CT DNA, ε_{f} is the extinction coefficient for the free complexes and ε_{A} is apparent absorption coefficient and is observed from $\mathrm{A}_{\text {obsd }} /[$ complexes]. The binding constant, K_{b} of the complexes $\mathbf{1 a} \mathbf{- 1 c}$ are calculated by the ratio of slope to the y-intercept by the linear fitting plots of $[\mathrm{DNA}] /\left(\varepsilon_{\mathrm{A}}-\varepsilon_{\mathrm{f}}\right)$ versus $[\mathrm{DNA}]$ according to the above equation.

2.6. Stern-Volmer equation for EtBr competitive study

The quenching efficiency for complexes $\mathbf{1 a - 1 \mathbf { c }}$ were analyzed according to the following SternVolmer eqn S9. ${ }^{16}$

$$
\begin{equation*}
I_{0} / I=1+K_{S V}[Q] \tag{eq.S9}
\end{equation*}
$$

Where, I_{0} and I are the emission intensities in the absence and the presence of the quencher (complexes), respectively. $[Q]$ is the concentration of the quencher and $K_{S V}$ is the quenching
constant and it is obtained from the slope of the linear plots of I_{0} / I versus $[Q]$ (Stern-Volmer plots, Supporting Information Fig. S21)

2.7. Apparent binding constant ($\mathrm{K}_{\text {app }}$)

Further, apparent binding constant ($K_{\text {app }}$) of complexes were calculated by using the following eqn S10. ${ }^{17}$

$$
\begin{equation*}
K_{E t B r}[E t B r]=K_{a p p}[\text { Complex }] \tag{eq.S10}
\end{equation*}
$$

Herein, [complex] corresponding to the concertation of the complexes at 50% reduction in the emission intensity of $\mathrm{EtBr},[\mathrm{EtBr}]$ is the concertation of $\mathrm{EtBr}=10 \mu \mathrm{M}$ and $K_{E t B r}=1.0 \times 10^{7}$, $\mathrm{M}^{-1 .}$

3. Supporting Tables and Figures

Table S1. Crystallographic Data and Structure Refinement parameters for complexes 1a-1c.

	1a	1b	1c
Empirical Formula	$\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{NiO}_{8}$	$\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{NiO}_{11}$	$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{NiO}_{4}$
Formula weight	724.38	801.44	553.25
Crystal system	triclinic	monoclinic	triclinic
Space group	P-1	C2/c	P-1
color	Greenish	green	brownish
a/Å	9.9515(8)	14.3041(18)	8.0970(15)
b/Å	13.1974(6)	25.146(2)	9.8370(14)
c/Å	14.5739(9)	11.4595(15)	15.489(2)
$\alpha{ }^{\circ}$	107.700(5)	90	98.035(11)
$\beta /{ }^{\circ}$	107.784(7)	111.123(14)	95.492(14)
$\gamma /{ }^{\circ}$	90.638(5)	90	93.658(14)
Volume/A ${ }^{3}$	1724.9(2)	3844.8(8)	1212.3(3)
Z	2	4	2
$\rho_{\text {calc/ } / \mathrm{gcm}^{-3}}$	1.395	1.385	1.516
μ / mm^{-1}	0.623	0.572	0.846
$\mathrm{F}(000)$	754.0	1672.0	576.0
Crystal size/mm ${ }^{3}$	$0.08 \times 0.06 \times 0.05$	$0.14 \times 0.09 \times 0.05$	$0.22 \times 0.19 \times 0.12$
Radiation	$\mathrm{MoK} \alpha / \lambda=0.71073$	$\mathrm{MoK} \alpha / \lambda=0.71073$	$\mathrm{MoK} \alpha / \lambda=0.71073$
2Θ range for data	7.406 to	6.75 to	6.83 to
collection/ ${ }^{\text {o }}$	59.082	59.226	59.782
Reflections collected	25902	28234	17832
Final R indexes	$\mathrm{R}_{1}=0.0595$	$\mathrm{R} 1=0.0769$	$\mathrm{R} 1=0.0946$
[$\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\mathrm{wR}_{2}=0.1483$	$\mathrm{wR}_{2}=0.1912$	$\mathrm{wR}_{2}=0.2327$
Final R indexes	$\mathrm{R}_{1}=0.0879$	$\mathrm{R}_{1}=0.1048$	R1 $=0.1384$
(all data) Largest diff. peak/hole/ e \AA^{-3}	$\mathrm{wR}_{2}=0.1696$ $1.64 /-0.53$	$\mathrm{wR}_{2}=0.2285$ $1.27 /-0.92$	$\mathrm{wR}_{2}=0.2876$ $1.30 /-1.23$
Data/restraints/parameters	8265/0/482	4896/0/259	6103/0/348
Goodness-of-fit on F^{2}	1.034	1.040	1.017

Table S2. Selected bond distances and angles for complex 1a.

Bond distances (i̊)			
$\mathrm{Ni}(1)-\mathrm{N}(2)$	$2.069(2)$	$\mathrm{Ni}(1)-\mathrm{N}(1)$	$2.055(2)$
$\mathrm{Ni}(1)-\mathrm{O}(1)$	$2.0382(19)$	$\mathrm{Ni}(1)-\mathrm{O}(4)$	$2.079(2)$
$\mathrm{Ni}(1)-\mathrm{O}(2)$	$2.032(2)$	$\mathrm{Ni}(1)-\mathrm{O}(5)$	$2.045(2)$
$\mathrm{C}(11)-\mathrm{O}(2)$	$1.263(3)$	$\mathrm{C}(23)-\mathrm{O}(5)$	$1.256(3)$
$\mathrm{C}(1)-\mathrm{O}(3)$	$1.235(4)$	$\mathrm{C}(23)-\mathrm{O}(6)$	$1.251(4)$
Bond angles $\left.\mathbf{0}^{\circ}\right)$			
$\mathrm{O}(2)-\mathrm{Ni}(1)-\mathrm{O}(1)$	$87.03(8)$	$\mathrm{O}(5)-\mathrm{Ni}(1)-\mathrm{N}(1)$	$91.22(9)$
$\mathrm{O}(1)-\mathrm{Ni}(1)-\mathrm{O}(5)$	$88.40(8)$	$\mathrm{O}(2)-\mathrm{Ni}(1)-\mathrm{O}(4)$	$86.39(8)$
$\mathrm{O}(1)-\mathrm{Ni}(1)-\mathrm{N}(1)$	$174.06(9)$	$\mathrm{O}(2)-\mathrm{Ni}(1)-\mathrm{O}(5)$	$171.42(7)$
$\mathrm{O}(1)-\mathrm{Ni}(1)-\mathrm{N}(2)$	$95.13(9)$	$\mathrm{O}(1)-\mathrm{Ni}(1)-\mathrm{O}(4)$	$91.31(8)$
$\mathrm{O}(2)-\mathrm{Ni}(1)-\mathrm{N}(1)$	$94.08(9)$	$\mathrm{N}(2)-\mathrm{Ni}(1)-\mathrm{O}(4)$	$172.45(8)$
$\mathrm{O}(2)-\mathrm{Ni}(1)-\mathrm{N}(2)$	$90.00(9)$	$\mathrm{N}(1)-\mathrm{Ni}(1)-\mathrm{O}(4)$	$94.58(9)$
$\mathrm{O}(5)-\mathrm{Ni}(1)-\mathrm{O}(4)$	$86.46(8)$	$\mathrm{N}(1)-\mathrm{Ni}(1)-\mathrm{N}(2)$	$79.05(10)$
$\mathrm{O}(5)-\mathrm{Ni}(1)-\mathrm{N}(2)$	$97.65(9)$		

Table S3. Selected bond distances and angles for complex 1b.
Bond distances (\AA)

$\mathrm{Ni}(1)-\mathrm{N}(1)$	$2.062(2)$	$\mathrm{C}(7)-\mathrm{O}(2)$	$2.259(3)$	
$\mathrm{Ni}(1)-\mathrm{O}(1)$	$2.0396(19)$	$\mathrm{C}(7)-\mathrm{O}(3)$	$2.245(4)$	
$\mathrm{Ni}(1)-\mathrm{O}(2)$	$2.024(2)$	$\mathrm{C}(10)-\mathrm{O}(1)$	$1.266(3)$	
Bond angles $\left.\mathbf{(}^{\circ}\right)$				
$\mathrm{O}(1)-\mathrm{Ni}(1)-\mathrm{O}(1)^{\prime}$	$91.37(11)$	$\mathrm{O}(2)^{\prime}-\mathrm{Ni}(1)-\mathrm{O}(2)$	$172.45(10)$	
$\mathrm{O}(1)-\mathrm{Ni}(1)-\mathrm{N}(1)$	$172.69(8)$	$\mathrm{O}(2)-\mathrm{Ni}(1)-\mathrm{N}(1)$	$89.90(9)$	
$\mathrm{O}(1){ }^{\prime}-\mathrm{Ni}(1)-\mathrm{N}(1)$	$94.59(10)$	$\mathrm{O}(2)-\mathrm{Ni}(1)-\mathrm{N}(1)$	$95.90(9)$	
$\mathrm{O}(2)-\mathrm{Ni}(1)-\mathrm{O}(1)$	$86.01(8)$	$\mathrm{N}(1)-\mathrm{Ni}(1)-\mathrm{N}(1)^{\prime}$	$79.79(14)$	
$\mathrm{O}(2)-\mathrm{Ni}(1)-\mathrm{O}(1)^{\prime}$,	$86.71(8)$			

Table S4. Selected bond distances and angles for complex 1c.

Bond distances (\mathbf{A})

$\mathrm{Ni}(01)-\mathrm{O}(1)$	$2.045(3)$	$\mathrm{Ni}(01)-\mathrm{N}(4)$	$2.083(4)$	
$\mathrm{Ni}(01)-\mathrm{O}(2)$	$2.054(3)$	$\mathrm{Ni}(01)-\mathrm{N}(1)$	$2.079(4)$	
$\mathrm{Ni}(01)-\mathrm{N}(3)$	$2.061(4)$	$\mathrm{C}(11)-\mathrm{O}(1)$	$1.302(6)$	
$\mathrm{Ni}(01)-\mathrm{N}(2)$	$2.085(4)$	$\mathrm{C}(20)-\mathrm{O}(2)$	$1.285(6)$	
Bond angles $\left(^{\circ}\right)$				
$\mathrm{O}(1)-\mathrm{Ni}(01)-\mathrm{O}(2)$	$168.96(13)$	$\mathrm{N}(3)-\mathrm{Ni}(01)-\mathrm{N}(2)$	$92.57(15)$	
$\mathrm{O}(1)-\mathrm{Ni}(01)-\mathrm{N}(3)$	$80.61(14)$	$\mathrm{N}(3)-\mathrm{Ni}(01)-\mathrm{N}(4)$	$94.40(15)$	
$\mathrm{O}(1)-\mathrm{Ni}(01)-\mathrm{N}(2)$	$97.05(15)$	$\mathrm{N}(3)-\mathrm{Ni}(01)-\mathrm{N}(1)$	$169.13(16)$	
$\mathrm{O}(1)-\mathrm{Ni}(01)-\mathrm{N}(4)$	$94.16(15)$	$\mathrm{N}(4)-\mathrm{Ni}(01)-\mathrm{N}(2)$	$167.64(15)$	
$\mathrm{O}(1)-\mathrm{Ni}(01)-\mathrm{N}(1)$	$94.45(15)$	$\mathrm{N}(1)-\mathrm{Ni}(01)-\mathrm{N}(2)$	$78.35(16)$	
$\mathrm{O}(2)-\mathrm{Ni}(01)-\mathrm{N}(3)$	$90.41(14)$	$\mathrm{N}(1)-\mathrm{Ni}(01)-\mathrm{N}(4)$	$95.62(16)$	
$\mathrm{O}(2)-\mathrm{Ni}(01)-\mathrm{N}(2)$	$89.72(14)$	$\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{Ni}(01)$	$112.9(3)$	
$\mathrm{O}(2)-\mathrm{Ni}(01)-\mathrm{N}(4)$	$80.04(14)$	$\mathrm{C}(20)-\mathrm{O}(2)-\mathrm{Ni}(01)$	$112.6(3)$	
$\mathrm{O}(2)-\mathrm{Ni}(01)-\mathrm{N}(1)$	$95.46(15)$			

Table S5. Hydrogen bonding interactions in the structures of the complexes 1a-1c.

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D}(\mathrm{D} \cdots \mathrm{H})$ $(\mathbf{\AA})$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})$ $(\mathbf{\AA})$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})$ (\AA)	$<(\mathrm{DHA})$ $\left({ }^{(}\right)$
$\mathbf{1 a}$				
$\mathrm{O}(8)-\mathrm{H}(8 \mathrm{~A}) \cdots \mathrm{O}(6)$	0.820	1.898	2.708	169.42
$\mathrm{O}(8) \cdots \mathrm{O}(9)$			2.936	
$\mathbf{1 b}$				
$\mathrm{O}(4)-\mathrm{H}(4 \mathrm{~B}) \cdots \mathrm{O}(3)$	0.850	1.905	2.737	165.80
$\mathrm{O}(5)-\mathrm{H}(5 \mathrm{~A}) \cdots \mathrm{O}(3)$	0.849	1.948	2.772	163.23
$\mathrm{O}(4)-\mathrm{H}(4 \mathrm{~A}) \cdots \mathrm{O}(5)$	0.849	1.933	2.767	167.08
$\mathrm{O}(3) \cdots \mathrm{O}(4)$			2.737	
$\mathrm{O}(6) \cdots \mathrm{O}(4)$			2.741	
$\mathbf{1 c}$				
$\mathrm{O}(3)-\mathrm{H}(3 \mathrm{~B}) \cdots \mathrm{O}(2)$	0.850	1.877	2.712	166.70
$\mathrm{O}(3)-\mathrm{H}(3 \mathrm{~A}) \cdots \mathrm{O}(1)$	0.850	1.890	2.740	177.23

Table S6. Protein-binding constant $\left(K_{b}\right)$, number of binding sites per albumins (n) and relative thermodynamic parameters ($\Delta G^{o}, \Delta S^{0}$ and ΔH^{0}) of the interaction of $\mathrm{Ni}^{\text {II }}$ complexes with SAs at different temperatures $\left(25,30\right.$ and $\left.35^{\circ} \mathrm{C}\right)$.

Complexes	T $\left({ }^{0} C\right)$	$K_{s v} \times 10^{4}$ $\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	$K_{q} \times 10^{12}$ $\left(\mathrm{M}^{-1}\right)$	$K_{b} \times 10^{5}$ $\left(\mathrm{M}^{-1}\right)$	n	ΔG^{o} kJmol	ΔS^{o} Jmol^{-1}	ΔH^{o} kJmol
				$\mathbf{B S A}$				
$\mathbf{1 a}$	25	$1.55(\pm 0.23)$	$1.55(\pm 0.23)$	$5.69(\pm 0.09)$	1.39	-32.83		
	30	$1.47(\pm 0.20)$	$1.47(\pm 0.20)$	$5.58(\pm 0.07)$	1.32	-33.33	96.37	-4.13
	35	$1.38(\pm 0.22)$	$1.38(\pm 0.22)$	$5.39(\pm 0.07)$	1.30	-33.79		
$\mathbf{1 b}$	25	$2.06(\pm 0.25)$	$2.06(\pm 0.25)$	$6.26(\pm 0.05)$	1.29	-33.06		
	30	$1.80(\pm 0.23)$	$1.80(\pm 0.25)$	$6.04(\pm 0.02)$	1.34	-33.53	57.15	-16.10
	35	$1.62(\pm 0.23)$	$1.62(\pm 0.25)$	$5.07(\pm 0.06)$	1.21	-33.63		
$\mathbf{1 c}$	25	$2.03(\pm 0.18)$	$2.03(\pm 0.18)$	$6.86(\pm 0.10)$	1.30	-32.29		
	30	$1.48(\pm 0.19)$	$1.48(\pm 0.19)$	$6.01(\pm 0.13)$	1.43	-33.52	66.72	-13.40
	35	$1.08(\pm 0.18)$	$1.08(\pm 0.18)$	$5.73(\pm 0.12)$	1.21	-33.95		
					$\mathbf{H S A}$			
$\mathbf{1 a}$	25	$2.22(\pm 0.15)$	$2.22(\pm 0.15)$	$5.85(\pm 0.03)$	1.40	-32.90		
	30	$1.88(\pm 0.17)$	$1.88(\pm 0.17)$	$5.82(\pm 0.06)$	1.38	-33.43	102.85	-2.26
	35	$1.31(\pm 0.15)$	$1.31(\pm 0.15)$	$5.68(\pm 0.05)$	1.18	-33.92		
$\mathbf{1 b}$	25	$3.66(\pm 0.21)$	$3.66(\pm 0.21)$	$6.66(\pm 0.10)$	1.46	-33.22		
	30	$2.89(\pm 0.10)$	$2.89(\pm 0.10)$	$4.79(\pm 0.19)$	1.13	-32.94	7.457	-35.40
	35	$2.16(\pm 0.18)$	$2.16(\pm 0.18)$	$4.14(\pm 0.16)$	1.02	-33.11		
$\mathbf{1 c}$	25	$1.27(\pm 0.10)$	$1.27(\pm 0.10)$	$5.77(\pm 0.02)$	1.25	-32.86		
	30	$0.86(\pm 0.12)$	$0.86(\pm 0.12)$	$4.93(\pm 0.04)$	0.97	-33.02	10.21	-29.90
	35	$0.57(\pm 0.12)$	$0.57(\pm 0.12)$	$3.89(\pm 0.06)$	1.01	-32.95		

Table S7. The proteins binding constant $\left(K_{b}\right)$ values for $\mathrm{Ni}^{\mathrm{II}}$ complexes reported.

Complexes	K_{b}		References
	BSA	HSA	
[$\mathrm{Ni}(\mathrm{nal})_{2}($ bpy $\left.)\right]$	$5.69(\pm 0.09) \times 10^{5}$	$5.85(\pm 0.03) \times 10^{5}$	This Work
$\left[\mathrm{Ni}(\mathrm{nal})_{2}(\right.$ phen $\left.)\right]$	$6.26(\pm 0.05) \times 10^{5}$	$6.66(\pm 0.10) \times 10^{5}$	
[$\left.\mathrm{Ni}(8-\mathrm{Hq})_{2}(\mathrm{bpy})\right]$	$6.86(\pm 0.10) \times 10^{5}$	$5.77(\pm 0.02) \times 10^{5}$	
nal $=$ Nalidixic Acid, bpy $=2,2^{\prime}$-bipyridine, phen $=1,10$-phenanhroline, $8-\mathrm{Hq}=8$ Hydroxyquinolone			
[$\mathrm{Ni}(\mathrm{erx})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right]$	5.64($\pm 0.10) \times 10^{4}$	$5.68(\pm 0.42) \times 10^{4}$	
[$\mathrm{Ni}(\mathrm{erx})_{2}$ (phen)]	$1.12(\pm 0.08) \times 10^{5}$	$3.30(\pm 0.28) \times 10^{4}$	18
[$\left.\mathrm{Ni}(\mathrm{erx})_{2}(\mathrm{bpy})\right]$	$1.03(\pm 0.07) \times 10^{5}$	$8.83(\pm 0.74) \times 10^{4}$	
[Ni (erx)2 $\left.{ }^{\text {(py }}\right)_{2}$]	$7.51(\pm 0.25) \times 10^{4}$	$9.43(\pm 0.45) \times 10^{4}$	
erx = Enrofloxacin, py = Pyridine			
[$\left.\mathrm{Ni}(\mathrm{nap})_{2}(\mathrm{MeOH})_{4}\right]$	$4.51(\pm 0.34) \times 10^{4}$	$1.35(\pm 0.11) \times 10^{4}$	
[$\mathrm{Ni}(\text { nap })_{2}($ bpy $\left.)\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right]$	$3.25(\pm 0.31) \times 10^{5}$	$1.93(\pm 0.03) \times 10^{5}$	
[$\mathrm{Ni}(\text { nap })_{2}($ phen $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	$4.18(\pm 0.34) \times 10^{5}$	$2.73(\pm 0.25) \times 10^{4}$	19
[$\mathrm{Ni}(\text { nap })_{2}$ (bipyam) ${ }_{2}$]	$4.59(\pm 0.35) \times 10^{4}$	$1.88(\pm 0.26) \times 10^{5}$	
[$\left.\mathrm{Ni}(\mathrm{nap})_{2}(\mathrm{Hpko})_{2}\right]$	$1.08(\pm 0.07) \times 10^{5}$	$3.02(\pm 0.41) \times 10^{4}$	
$\left[\mathrm{Ni}(\mathrm{erx})_{2}(\mathrm{py})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$7.44(\pm 0.55) \times 10^{3}$	$4.05(\pm 0.23) \times 10^{4}$	
Hnap = Naproxen, bipyam = 2, ${ }^{\prime}$ '-dipyridylamine, Hpko $=2,2^{\prime}$ 'dipyridylketone oxime			
$\left[\mathrm{Ni}(\mathrm{mef})_{2}(\mathrm{bpy})(\mathrm{MeOH})_{2}\right]$	$3.23(\pm 0.14) \times 10^{5}$	$2.44(\pm 0.08) \times 10^{5}$	
$\left[\mathrm{Ni}(\mathrm{mef})_{2}(\mathrm{phen})(\mathrm{MeOH})_{2}\right]$	$3.10(\pm 0.14) \times 10^{5}$	$2.23(\pm 0.14) \times 10^{5}$	
[$\left.\mathrm{Ni}(\mathrm{mef})_{2}(\text { bipyam })_{2}\right]$	$2.33(\pm 0.11) \times 10^{5}$	$2.03(\pm 0.16) \times 10^{5}$	20
$\left[\mathrm{Ni}(\mathrm{mef})_{2}(\mathrm{Hpko})_{2}\right]$	$1.35(\pm 0.07) \times 10^{5}$	$3.42(\pm 0.23) \times 10^{5}$	
$\left[\mathrm{Ni}(\mathrm{mef})_{2}(\mathrm{py})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$3.22(\pm 0.09) \times 10^{5}$	$3.85(\pm 0.20) \times 10^{5}$	
$\left[\mathrm{Ni}(\mathrm{mef})_{2}(\mathrm{MeOH})_{4}\right]$	$2.11(\pm 0.10) \times 10^{5}$	$3.00(\pm 0.20) \times 10^{5}$	
Hmef = Mefenamic acid			
[$\mathrm{Ni}($ dicl)(Hdicl)(Hpko) 2]	$2.21(\pm 0.23) \times 10^{5}$	$2.54(\pm 0.27) \times 10^{4}$	
[$\mathrm{Ni}(\text { dicl })_{2}$ (bpy) ${ }^{\text {d }}$	$1.31(\pm 0.11) \times 10^{6}$	$3.60(\pm 0.41) \times 10^{5}$	21
[$\mathrm{Ni}(\text { dicl) })_{2}($ phen $\left.)\right]$	$1.72(\pm 0.13) \times 10^{5}$	$6.87(\pm 0.42) \times 10^{5}$	
Nadicl $=$ Sodium diclofenac			
[$\left.\mathrm{Ni}(\text { indo })_{2}(\mathrm{MeOH})_{4}\right]$	$1.59(\pm 0.07) \times 10^{5}$	$7.55(\pm 0.07) \times 10^{4}$	
[$\mathrm{Ni}\left(\right.$ indo (bipyam) $\left.{ }_{2}\right] \mathrm{Cl}$	$1.03(\pm 0.03) \times 10^{5}$	$8.00(\pm 0.07) \times 10^{4}$	
[$\left.\mathrm{Ni}(\text { indo })_{2}(\mathrm{bpy})(\mathrm{MeOH})_{2}\right]$	$4.24(\pm 0.02) \times 10^{4}$	$4.72(\pm 0.07) \times 10^{4}$	
[Ni (indo) $)_{2}$ (bipyam) $]$	$1.48(\pm 0.07) \times 10^{5}$	$1.59(\pm 0.07) \times 10^{4}$	22
$\left[\mathrm{Ni}(\text { indo })_{2}(\right.$ phen $\left.)(\mathrm{MeOH})_{2}\right]$	$5.14(\pm 0.03) \times 10^{4}$	$6.30(\pm 0.07) \times 10^{4}$	
$\left[\mathrm{Ni}(\text { indo })_{2}(\mathrm{Hpko})_{2}\right]$	$1.70(\pm 0.06) \times 10^{5}$	$3.73(\pm 0.07) \times 10^{4}$	
indo = Indomethacin			
$\left[\mathrm{Ni}(\text { (tolf) })_{2}(\mathrm{H} 2 \mathrm{O})_{2}\right]$	$3.76(\pm 0.35) \times 10^{5}$	$1.59(\pm 0.15) \times 10^{5}$	
[$\left.\mathrm{Ni}(\text { (tolf) })_{2}(\mathrm{bpy})(\mathrm{MeOH})_{2}\right]$	$3.73(\pm 0.38) \times 10^{5}$	$2.23(\pm 0.11) \times 10^{5}$	
$\left[\mathrm{Ni}(\text { tolf })_{2}(\right.$ phen $\left.)(\mathrm{MeOH})_{2}\right]$	$4.92(\pm 0.41) \times 10^{5}$	$1.46(\pm 0.06) \times 10^{5}$	23
[$\mathrm{Ni}(\text { tolf) })_{2}($ bipyam $]$	$4.86(\pm 0.34) \times 10^{5}$	$1.32(\pm 0.04) \times 10^{5}$	
[$\left.\mathrm{Ni}(\text { (tolf })_{2}(\mathrm{Hpko})_{2}\right]$	$3.12(\pm 0.29) \times 10^{5}$	$2.08(\pm 0.10) \times 10^{5}$	
$\left[\mathrm{Ni}(\text { (tolf) })_{2}(\mathrm{py})_{2}(\mathrm{MeOH})_{2}\right]$	$1.57(\pm 0.14) \times 10^{5}$	$1.44(\pm 0.09) \times 10^{5}$	
tolf = Tolfenamic acid			
[$\left.\mathrm{Ni}(\text { difl })_{2}(\mathrm{MeOH})_{4}\right]$	1.69($\pm 0.09) \times 10^{5}$	$1.41(\pm 0.08) \times 10^{5}$	24
[$\left.\mathrm{Ni}(\mathrm{difl})_{2}(\mathrm{Hpko})_{2}\right]$	$9.78(\pm 0.82) \times 10^{4}$	$1.25(\pm 0.06) \times 10^{5}$	
$\left[\mathrm{Ni}(\mathrm{difl})_{2}(\right.$ phen $\left.)(\mathrm{MeOH})_{2}\right]$	$9.70(\pm 0.66) \times 10^{4}$	$2.68(\pm 0.20) \times 10^{5}$	
$\left[\mathrm{Ni}(\mathrm{difl})_{2}(\mathrm{bpy})(\mathrm{MeOH})\right]$	$7.33(\pm 0.34) \times 10^{4}$	$2.66(\pm 0.17) \times 10^{5}$	

$\left[\mathrm{Ni}(\text { difl })_{2}(\right.$ bipyam $\left.)\right] \quad 1.04(\pm 0.05) \times 10^{5} \quad 1.60(\pm 0.06) \times 10^{5}$

Table S8. The binding parameters [\% hypochromism ($\Delta \varepsilon$), DNA binding constants ($\boldsymbol{K}_{\boldsymbol{b}}$), Gibbs free energy ($\Delta \boldsymbol{G}^{\boldsymbol{o}}$,), Stern-Volmer constant ($\boldsymbol{K}_{\boldsymbol{S V}}$) and apparent binding constant ($\left.\boldsymbol{K}_{\text {app }}\right)$] of complexes 1a-1c.

Complexes	$\Delta \varepsilon(\%)$	$\begin{gathered} \hline K_{b} \times 10^{5} \\ \left(\mathrm{M}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta G^{o}, \\ \left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} \hline K_{S V} \times 10^{5} \\ \left(\mathrm{M}^{-1}\right) \\ \hline \end{gathered}$	$\begin{gathered} K_{\text {app }} \times 10^{6} \\ \left(\mathrm{M}^{-1}\right) \\ \hline \end{gathered}$
1a	$\begin{aligned} & 33 \% \text { (band I), } \\ & 26 \% \text { (band II) } \end{aligned}$	$2.81(\pm 0.08)$	-32.00	$1.14(\pm 0.10)$	2.50
1b	32% (band I), 11% (band II)	5.51($\pm 0.07)$	-33.42	0.83($\pm 0.15)$	2.85
1c	21\% (band I), 16\% (band II), 15\% (band III), 12% (band IV)	$4.31(\pm 0.03)$	-37.39	$1.51(\pm 0.12)$	4.0

Table S9. DNA-binding constant ($\mathrm{K}_{\mathbf{b}}$) and Stern-Volmer quenching constant ($\boldsymbol{K}_{\boldsymbol{S V}}$) values for nickel complexes reported.

Complexes	K_{b}	$K_{S V}$	References
[$\left.\mathrm{Ni}(\mathrm{nal})_{2}(\mathrm{bpy})\right]$	$2.81(\pm 0.08) \times 10^{5}$	$1.14(\pm 0.10) \times 10^{5}$	This Work
[$\mathrm{Ni}(\text { nal })_{2}($ phen $\left.)\right]$	$5.51(\pm 0.07) \times 10^{5}$	$0.83(\pm 0.15) \times 10^{5}$	
[$\left.\mathrm{Ni}(8-\mathrm{Hq})_{2}(\mathrm{bpy})\right]$	$4.31(\pm 0.03) \times 10^{5}$	$1.51(\pm 0.12) \times 10^{5}$	
nal $=$ Nalidixic Acid, bpy $=2,2^{\prime}$-bipyridine, phen $=1,10-$ phenanhroline, $8-\mathrm{Hq}=8$ Hydroxyquinolone			
$\left[\mathrm{Ni}(\mathrm{erx})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$1.75(\pm 0.40) \times 10^{4}$		18
[$\mathrm{Ni}(\mathrm{erx})_{2}(\mathrm{bpy})$]	$1.63(\pm 0.25) \times 10^{4}$		
[$\mathrm{Ni}\left(\right.$ (erx) $\left.{ }_{2}(\mathrm{phen})\right]$	$4.09(\pm 0.53) \times 10^{4}$		
$\left[\mathrm{Ni}(\mathrm{erx})_{2}(\mathrm{py})_{2}\right]$	$2.59(\pm 0.48) \times 10^{5}$		
erx $=$ Enrofloxacin, py $=$ Pyridine			
[$\left.\mathrm{Ni}(\mathrm{nap})_{2}(\mathrm{MeOH})\right]$	$1.47(\pm 0.05) \times 10^{5}$	$1.52(\pm 0.04) \times 10^{5}$	19
[$\mathrm{Ni}(\text { nap })_{2}($ bpy $)\left(\mathrm{CH}_{3} \mathrm{OH}\right]$	$5.96(\pm 0.10) \times 10^{5}$	$1.29(\pm 0.03) \times 10^{5}$	
[$\mathrm{Ni}(\text { nap })_{2}($ phen $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	$1.54(\pm 0.12) \times 10^{5}$	$1.06(\pm 0.04) \times 10^{5}$	
[$\mathrm{Ni}(\text { nap })_{2}$ (bipyam) $]$	$2.91(\pm 0.31) \times 10^{5}$	$9.80(\pm 0.20) \times 10^{4}$	
Hnap $=$ Naproxen, bipyam $=2,2^{\prime}$-dipyridylamine			
$\left[\mathrm{Ni}(\mathrm{mef})_{2}(\mathrm{bpy})(\mathrm{MeOH})_{2}\right]$	$1.20(\pm 0.23) \times 10^{5}$		20
[$\mathrm{Ni}(\mathrm{mef})_{2}($ phen $\left.)(\mathrm{MeOH})_{2}\right]$	$8.26(\pm 0.19) \times 10^{4}$		
$\left[\mathrm{Ni}(\mathrm{mef})_{2}(\text { bipyam })_{2}\right]$	$1.46(\pm 0.33) \times 10^{5}$		
$\left[\mathrm{Ni}(\mathrm{mef})_{2}(\mathrm{py})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$1.19(\pm 0.25) \times 10^{5}$		
$\left[\mathrm{Ni}(\mathrm{mef})_{2}(\mathrm{MeOH})_{4}\right]$	$2.62(\pm 0.35) \times 10^{5}$		
Hmef $=$ Mefenamic acid			
[$\mathrm{Ni}\left(\right.$ dicl)(Hdicl)(Hpko) ${ }_{2}$]	$3.63(\pm 0.12) \times 10^{5}$		21
[Ni (dicl)2(bpy)]	$2.21(\pm 0.08) \times 10^{5}$		
[$\mathrm{Ni}(\text { dicl) })_{2}($ phen $\left.)\right]$	$3.67(\pm 0.17) \times 10^{4}$		
Nadicl $=$ Sodium diclofenac			
[$\left.\mathrm{Ni}(\mathrm{indo})_{2}(\mathrm{MeOH})_{4}\right]$	$2.09(\pm 0.02) \times 10^{5}$	$1.24(\pm 0.03) \times 10^{5}$	22

$\left[\mathrm{Ni}(\right.$ indo $\left.)(\text { bipyam })_{2}\right] \mathrm{Cl}$	$4.42(\pm 0.15) \times 10^{4}$		
$\left[\mathrm{Ni}(\text { indo })_{2}(\right.$ bpy $\left.)(\mathrm{MeOH})_{2}\right]$	$2.32(\pm 0.06) \times 10^{5}$		
$\left[\mathrm{Ni}(\text { indo })_{2}(\right.$ bipyam $\left.)\right]$	$4.75(\pm 0.25) \times 10^{5}$	$1.47(\pm 0.04) \times 10^{5}$	
$\left[\mathrm{Ni}(\text { indo })_{2}(\mathrm{Hpko})_{2}\right]$	$4.15(\pm 0.27) \times 10^{5}$		23
$\left[\mathrm{Ni}(\text { tolf })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$	$9.50(\pm 0.25) \times 10^{4}$	$7.95(\pm 0.03) \times 10^{4}$	
$\left[\mathrm{Ni}(\text { (tolf })_{2}(\right.$ bpy $\left.)(\mathrm{MeOH})_{2}\right]$	$2.35(\pm 0.12) \times 10^{5}$		
$\left[\mathrm{Ni}(\text { (tolf })_{2}(\text { Hpko })_{2}\right]$	$2.80(\pm 0.35) \times 10^{5}$		

Htolf $=$ tolfenamic acid, bpy $=2,2^{\prime}$-bipyridine, $\mathrm{Hpko}=2,2^{\prime}$-dipyridylketone oxime

$\left[\mathrm{Ni}(\text { difl })_{2}(\mathrm{MeOH})\right.$	$2.00(\pm 0.17) \times 10^{5}$	$8.26(\pm 0.22) \times 10^{4}$	24
$\left[\mathrm{Ni}(\text { difl })_{2}(\right.$ phen $)(\mathrm{MeOH})$	$8.35(\pm 0.05) \times 10^{4}$	$9.27(\pm 0.59) \times 10^{4}$	
$\left[\mathrm{Ni}(\text { difl })_{2}(\right.$ bipyam $\left.)\right]$	$2.00(\pm 0.20) \times 10^{5}$	$9.56(\pm 0.45) \times 10^{4}$	
NiL^{2}	2.0×10^{4}		25
NiL^{3}	1.0×10^{4}		

$\mathbf{L}^{\mathbf{2}}=(\mathrm{E})-3$-hydroxy-N'-(1-(pyrazin-2-yl)ethylidene)benzohydrazide, $\mathbf{L}^{\mathbf{3}}=(\mathrm{E})-4-$ hydroxy-N'-(1-(pyrazin-2-yl)ethylidene)benzohydrazide

$\left[\mathrm{Ni}\left(\eta-\mathrm{NO}_{3}\right)(\right.$ bta $)($ phen $\left.)\right]$	6.05×10^{3}	26
$\left[\mathrm{Ni}\left(\eta-\mathrm{NO}_{3}\right)(\right.$ btc) $)($ phen $\left.)\right]$	1.31×10^{4}	
$\left[\mathrm{Ni}\left(\eta-\mathrm{NO}_{3}\right)(\right.$ btf $)($ phen $\left.)\right]$	4.94×10^{4}	

bta $=4,4,4$-trifluoro-1-phenyl-1,3-butanedione anion, btc $=1$-(4-chlorophenyl)-4,4,4-trifluoro-1,3-butanedione anion, $\mathrm{btf}=4,4,4$-trifluoro-1-(2-furyl)-1,3-butanedione anion, phen $=1,10$-phenanthroline

$\left[\mathrm{Ni}(\text { phen })_{3}\right]$	$1.40(\pm 0.16) \times 10^{4}$		27
$\left[\mathrm{Ni}(5,6-\mathrm{dmp})_{3}\right]$	$3.17(\pm 0.07) \times 10^{4}$		
$\left[\mathrm{Ni}(\mathrm{dpq})_{2}\right]$	$5.80(\pm 0.10) \times 10^{4}$		
$\left[\mathrm{Ni}_{2} \mathbf{L}^{1}\right]$	1.17×10^{4}	1.02	28
$\left[\mathrm{Ni}_{2} \mathbf{L}^{2}\right]$	2.0×10^{4}	1.11	
$\left[\mathrm{Ni}_{2} \mathbf{L}^{3}\right]$	2.0×10^{4}	1.06	
$\left[\mathrm{Ni}_{2} \mathbf{L}^{4}\right]$	5.0×10^{4}	2.92	
$\left[\mathrm{Ni}_{2} \mathbf{L}^{4}\right]$	1.16×10^{5}	3.6	

$\mathbf{L}^{1}=1,2$-diamino ethane, $\mathbf{L}^{\mathbf{2}}=1,3$-diamino propane, $\mathbf{L}^{\mathbf{3}}=1,4$-diamino butane, $\mathbf{L}^{4}=1,2$ diamino benzene and $\mathbf{L}^{5}=1,8$-diamino naphthalene

$\left[\mathrm{Ni}\left(\mathbf{L}^{1}\right)_{2}\right]$	$1.14(\pm 0.05) \times 10^{5}$	$1.13(\pm 0.04) \times 10^{5}$	
$\left[\mathrm{Ni}\left(\mathbf{L}^{2}\right)_{2}\right]$	$0.98(\pm 0.10) \times 10^{5}$	$1.02(\pm 0.12) \times 10^{5}$	29
$\left[\mathrm{Ni}\left(\mathbf{L}^{3}\right)_{2}\right]$	$0.97(\pm 0.08) \times 10^{5}$	$1.01(\pm 0.18) \times 10^{5}$	
$\left[\mathrm{Ni}\left(\mathbf{L}^{4}\right)_{2}\right]$	$0.89(\pm 0.06) \times 10^{5}$	$1.00(\pm 0.28) \times 10^{5}$	

$\mathbf{L}^{1}=\mathrm{N}$-(2-Methylphenyl)pyridine-2-thiocarboxamide, $\mathbf{L}^{\mathbf{2}}=\mathrm{N}$-(4-Methylphenyl)pyridine-2thiocarboxamide, $\mathbf{L}^{\mathbf{3}}=\mathrm{N}$-(2,4,6-Trimethylphenyl)pyridine-2-thiocarboxamide, $\mathbf{L}^{\mathbf{4}}=\mathrm{N}$-(2-Chlorophenyl)pyridine-2-thiocarboxamide

NiL_{2} phen. $\mathrm{CH}_{3} \mathbf{C N}$	$1.20(\pm 0.15) \times 10^{5}$	$4.45(\pm 0.06) \times 10^{4}$	30
$\left[\mathrm{Ni}\left(\mathbf{L}^{1}\right)_{2}\right]$	1.50×10^{4}	1.30×10^{4}	
$\left[\mathrm{Ni}\left(\mathbf{L}^{2}\right)_{2}\right]$	3.74×10^{4}	1.50×10^{4}	31
$\left[\mathrm{Ni}\left(\mathbf{L}^{3}\right)_{2}\right]$	4.02×10^{4}	4.02×10^{4}	
$\left[\mathrm{Ni}\left(\mathbf{L}^{4}\right)_{2}\right]$	8.56×10^{4}	8.56×10^{4}	
$\left[\mathrm{Ni}\left(\mathbf{L}^{5}\right)_{2}\right] \mathrm{Cl}_{2}$	1.35×10^{5}	1.37×10^{5}	

$\mathbf{L}=$ Schiff bases derived from benzaldehyde

$\left[\mathrm{Ni}\left(\mathbf{L}^{1}\right)_{2}\right]$	2.13×10^{4}	32
$\left[\mathrm{Ni}\left(\mathbf{L}^{2}\right)\left(\mathrm{H} \mathbf{L}^{2}\right)\right] . \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$	7.34×10^{4}	

$\mathbf{L}^{\mathbf{1}}=(\mathrm{E})$-N-methyl-2-(quinolin-2-ylmethylene)hydrazinecarbothioamide and $\mathbf{L}^{\mathbf{2}}=(\mathrm{E})-\mathrm{N}, \mathrm{N}-$ dimethyl-2-(quinolin-2-ylmethylene)hydrazinecarbothioamide

$\left[\mathrm{Ni}_{2}\left(\mathrm{H}_{2} \mathbf{L}^{1}\right)_{2}(\mathrm{OAc})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)_{2}\right]_{2}$	2.39×10^{3}	1.38	33
$\left[\mathrm{Ni}_{4}\left(\mathrm{HL}^{2}\right)_{3}\left(\mu_{3}-\mathrm{O}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$	2.55×10^{3}	1.52	

$\mathbf{H}_{3} \mathbf{L}^{\mathbf{1}}=\left\{2\right.$-ethyl-2-((2-hydroxybenzylideneamino)propane-1,3-diol, and $\mathbf{H}_{3} \mathbf{L}^{\mathbf{2}}=$ 2-ethyl-2-((2-hydroxy-3-methoxybenzylideneamino)propane-1,3-diol

$\left[\mathrm{Ni}\left(\mathbf{L}^{1}\right)_{2}\right]$	1.60×10^{4}	1.47×10^{4}	34
$\left[\mathrm{Ni}\left(\mathbf{L}^{2}\right)_{2}\right]$	2.10×10^{4}	1.80×10^{4}	
$\left[\mathrm{Ni}\left(\mathbf{L}^{3}\right)_{2}\right]$	1.63×10^{4}	1.65×10^{4}	
$\left[\mathrm{Ni}\left(\mathbf{L}^{4}\right)_{2}\right]$	2.91×10^{4}	1.99×10^{4}	1.27×10^{5}
$\left[\mathrm{Ni}\left(\mathbf{L}^{5}\right)_{2}\right]$	1.40×10^{5}	1.2	

$\mathbf{L}^{\mathbf{1}}=(\mathrm{Z})$-N-methyl-2-(2-oxoindolin-3-ylidene)hydrazinecarbothioamide, $\mathbf{L}^{\mathbf{2}}=(\mathrm{Z})$-2-(1-allyl-2-oxoindolin-3-ylidene)-N-methylhydrazinecarbothioamide, $\mathbf{L}^{\mathbf{3}}=(\mathrm{Z})-\mathrm{N}$-methyl-2-(1-methyl-2-oxoindolin-3-ylidene)hydrazinecarbothioamide, $\quad \mathbf{L}^{4}=$ (Z)-2-(1-benzyl-2-oxoindolin-3-ylidene)-N-methylhydrazinecarbothioamide, $\mathbf{L}^{5}=(\mathrm{Z})$-2-(5-bromo-1-methyl-2-oxoindolin-3-ylidene)-N-methylhydrazinecarbothioamide

Table S10. Cathodic and Anodic Potentials (in V) for the Redox Couple $\mathrm{Ni}^{\mathrm{II}} / \mathrm{Ni}^{\mathrm{I}}$ in 112 DMSO: buffer Solution of the Complexes in the Absence as well as Presence of CT DNA.

Complexes	$E_{p c(f)}^{a}$	$E_{p c(b)}^{b}$	$\Delta E_{p c}^{c}$	$E_{p a(f)}^{a}$	$E_{p a(b)}^{b}$	$\Delta E_{p a}^{c}$
$\mathbf{1 a}$	-0.916	-0.875	+0.041	-0.481	-0.419	+0.062
$\mathbf{1 b}$	-0.850	-0.818	+0.032	-0.285	-0.248	+0.037
$\mathbf{1 c}$	-0.793	-0.757	+0.036	-0.332	-0.277	+0.055

${ }^{2} E_{p c / a}$ in $1 / 2$ DMSO: buffer solution in the absence of CT DNA solution $E_{p c / a(f)}$.
${ }^{b} E_{p c / a}$ in $1 / 2$ DMSO: buffer solution in the presence of CT DNA $E_{p c / a(b)}$.
${ }^{c} \Delta E_{p c / a}=E_{p c / a(b)}-E_{p c / a(f)}$.

Fig. S1. Crystal packing representations of the complexes 1a-1c.

Fig. S2. Intermolecular hydrogen bonding interactions in complex 1a leading to the formation of cage-like structure.

Fig. S3. Intermolecular hydrogen bonding interactions in complex 1b leading to the formation of chain structure.

Fig. S4. Intermolecular hydrogen bonding interactions in complex 1c leading to the formation of cage-like structure.

Fig. S5. FT-IR spectrum of complexes 1a-1c.

Fig. S6. The stability plots of complexes (a) $\left[\mathrm{Ni}(\mathrm{nal})_{2} \mathrm{bpy}\right] \mathbf{1 a},(\mathbf{b})\left[\mathrm{Ni}(\mathrm{nal})_{2}\right.$ phen] $\mathbf{1 b}$ and (c) [$\left.\mathrm{Ni}(8-\mathrm{Hq})_{2} \mathrm{bpy}\right], \mathbf{1 c}$ in different time periods.

Fig. S7. The Stern-Volmer plots for the quenching of BSA $(20 \mu \mathrm{M})$ by the complexes (a) 1a, (b) $\mathbf{1 b}$ and (c) $\mathbf{1 c}$ at three different temperatures $\left(25,30\right.$ and $\left.35^{\circ} \mathrm{C}\right)$. (d) UV/Vis absorption spectrum of BSA (black dashed line) in the presence of complexes (other lines).

Fig. S8. The Stern-Volmer plots for the quenching of HSA ($20 \mu \mathrm{M}$) by the complexes (a) 1a, (b) $\mathbf{1 b}$ and (c) $\mathbf{1 c}$ at three different temperatures (25,30 and $35^{\circ} \mathrm{C}$). (d) UV/Vis absorption spectrum of HSA (black dashed line) in the presence of complexes (other lines).

Fig. S9. Scatchard plots of BSA at different temperature for complexes 1a-1c.

Fig. S10. Scatchard plots of HSA at different temperature for complexes 1a-1c.

Fig. S11. The van't Hoff graphs for the binding of (a) BSA and (b) HSA for complexes 1a-1c at 298,303 , and $308 \mathrm{~K}\left(25,30\right.$ and $\left.35^{\circ} \mathrm{C}\right)$.

Fig. S12. Synchronous fluorescence spectra of free BSA and HSA in the presence of the increasing concentrations of complexes $\mathbf{1 a}$ at $\Delta \lambda=15$ and 60 nm . Arrows (\downarrow) show that the intensity changes upon increasing concentrations of the complexes.

Fig. S13. Synchronous fluorescence spectra of free BSA and HSA in the presence of the increasing concentrations of complexes $\mathbf{1 b}$ at $\Delta \lambda=15$ and 60 nm . Arrows (\downarrow) show that the intensity changes upon increasing concentrations of the complexes.

Fig. S14. Three dimensional (3D) fluorescence spectra of (a) BSA (b) BSA + $\mathbf{1 a}$ (c) BSA $+\mathbf{1 b}$ and (d) $\mathrm{BSA}+\mathbf{1 c}$. Concentrations of $\mathrm{BSA}=10 \mu \mathrm{M}$ and $\mathbf{1 a - 1} \mathbf{c}=10 \mu \mathrm{M}$.

Fig. S15. Three dimensional (3D) fluorescence spectra of (a) HSA (b) HSA + 1a (c) HSA + $\mathbf{1 b}$ and (d) HSA $+\mathbf{1 c}$. Concentrations of HSA $=10 \mu \mathrm{M}$ and $\mathbf{1 a} \mathbf{- 1} \mathbf{c}=10 \mu \mathrm{M}$.

Fig. S16. SDS-PAGE diagram of bovine serum albumin (BSA, $15 \mu \mathrm{M}$) and human serum albumin (HSA, $15 \mu \mathrm{M}$) incubated with various concentrations of complexes $\mathbf{1 c}$ in the presence of $\mathrm{H}_{2} \mathrm{O}_{2}(100 \mu \mathrm{M})$ in buffer solution (150 mM NaCl and 15 mM trisodium citrate at pH 7.2).

Fig. S17. UV absorbance spectra of CT DNA in a buffer solution containing 150 mM NaCl and 15 mM trisodium citrate at pH 7.4 in the absence as well as the presence of the diverse concentration of complexes (a) 1a, (b) $\mathbf{1 b}$ and (c) 1c. The arrows (\downarrow) illustrations the changes occur upon the addition of increasing amounts of complexes.

Fig. S18. Absorption spectra of complexes (a) 1b and (c) 1c upon the titration of CT DNA in 5 mM trisodium citrate $/ 150 \mathrm{mM} \mathrm{NaCl}$ buffer. The arrows (\downarrow) display the decreases in absorbance with respect to an increase in the concentration of CT DNA solution (in all).

Fig. S19. CD spectrum of free CT DNA solution (black dashed lines) or in the presence of the increasing concentration of complexes (a) 1a, (b) $\mathbf{1 b}$ and (c) $\mathbf{1 c}$ (other solid lines). (d) The effect of the increasing concentration of complexes $\mathbf{1 a}$ (blue line), $\mathbf{1 b}$ (green line), and $\mathbf{1 c}$ (pink line) on the relative viscosity $\left(\eta / \eta_{0}\right)^{1 / 3}$ of CT DNA at room temperature.

Fig. S20. Cyclic voltammogram of $0.5 \mathrm{mM} 1 / 2$ DMSO: buffer Solution of complex $\mathbf{1 c}$ in the absence as well as in the presence of CT DNA solution. Scan rate $=100 \mathrm{mVs}^{-1}$ (Supporting electrolyte $=$ buffer solution).

Fig. S21. Stern-Volmer quenching plots of EtBr bound to CT DNA for complexes 1a-1c.

Fig. S22. Gel electrophoresis images of SC plasmid pBR322 DNA incubated with different concentrations of complexes 1a-1c in the presence of activator-like $\mathrm{H}_{2} \mathrm{O}_{2}$ for 1 h at $37^{\circ} \mathrm{C}$. Form I, II and III represents the supercoiled (SC), nicked circular and linear forms of DNA.

References

(1) CrysAlisPro, version 1.171.33.49b, Oxford Diffraction Ltd, Abingdon, UK, 2009.
(2) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
(3) G. M. Sheldrick, 2015, 71, 3-8.
(4) M. Kumar, G. Kumar, D. T. Masram, New J. Chem., 2020, 44, 8595-8613.
(5) M. Blagosklonny, W. S. El-Diery, Int. J. Cancer, 1996, 67, 386-392.
(6) E. Ramachandran, D. S. Raja, N. P. Rath, K. Natarajan, Inorg. Chem., 2013, 52, 1504-1514.
(7) M. Mohanraj, G. Ayyannan, G. Raja, C. Jayabalakrishnan, Mater. Sci. Eng. C., 2016, 69, 1297-1306.
(8) K. C. Skyrianou, V. Psycharis, C. P. Raptopoulou, D. P. Kessissoglou and G. Psomas, J. Inorg. Biochem., 2011, 105, 63-74.
(9) E. S. Koumousi, M. Zampakou, C. P. Raptopoulou, V. Psycharis, C. M. Beavers, S. J. Teat, G. Psomas, T. C. Stamatatos, Inorg. Chem., 2012, 51, 7699-7710.
(10) E. Ramachandran, D. S. Raja, N. P. Rath and K. Natarajan, Inorg. Chem., 2013, 52, 1504-1514.
(11) Y. Manojkumar, S. Ambika, R. Arulkumar, G. Balakrishnan, P. Balaji, G. Vignesh, S. Arunachalam, P. Venuvanalingam, R. Thirumurugan and M. A. Akbarsha, New. J. Chem., 2019, 43, 11391-11407.
(12) M. Kumar, G. Kumar, K. M. Dadure, D. T. Masram, New. J. Chem., 2019, 43, 15462-15481.
(13) J. N. Miller, Proc. Anal. Div. Chem. Soc., 1979, 16, 203-208.
(14) V. D. Suryawanshi, L. S. Waleker, A. H. Gore, V. Anbhule and G. B. Kolekar, J. Pharm. Anal., 2016, 6, 56-63.
(15) C.-L. Zhang, Y.-X. Liu, X.-M. Zhang, S. Chen, F. Shen, Y.-H. Xiong, W. Liu, Z.W. Mao, X.-Y. Le, Mater. Sci. Eng. C., 2018, 91, 414-425.
(16) P. Vijayan, P. Viswanathamurthi, K. Velmurugan, R. Nandhakumar, M. D. Balakumaran, P. T. Kalaichelvan and J. G. Malecki, RSC Adv., 2015, 5, 103321-103342.
(17) R. K. Gupta, G. Sharma, R. Pandey, A. Kumar, B. Koch, P.-Z. Li, Q. Xu, D. S. Pandey, Inorg. Chem., 2013, 52, 13984-13996.
(18) K. C. Skyrianou, V. Psycharis, C. P. Raptopoulou, D. P. Kessissoglou and G. Psomas, J. Inorg. Biochem., 2011, 105, 63-74.
(19) X. Totta, A. G. Hatzidimitriou, A. N. Papadopoulos, G. Psomas, New J. Chem., 2017, 41, 4478-4492.
(20) X. Totta, A. A. Papadopoulos, A. G. Hatzidimitriou, A. Papadopoulos and G. Psomas, J. Inorg. Biochem., 2015, 145, 79-93.
(21) M. Kyropoulou, C. P. Raptopoulou, V. Psycharis and G. Psomas, Polyhedron, 2013, 61, 126-136.
(22) S. Perontsis, A. Tialiou, A. N. Hatzidimitriou, A. N. Papadopoulos and G. Psomas, Polyhedron, 2017, 138, 258-269.
(23) X. Totta, A. G. Hatzidimitriou, A. N. Papadopoulos and G. Psomas, Polyhedron, 2016, 117, 172-183.
(24) S. Perontsis, A. G. Hatzidimitriou, A. N. Papadopoulos, G. Psomas, J. Inorg. Biochem., 2016, 162, 9-21.
(25) P. Yang, L.-L. Zhang, Z.-Z. Wang, D.-D. Zhang, Y.-M. Liu, Q.-S. Shi and X.-B. Xie, J. Inorg. Biochem., 2020, 203, 110919.
(26) L. M. Sousa, W. A. Souza, D. A. Paixao, R. B. Fazzi, D. Y. Tezuka, C. D. Lopes, Z. A. Carneiro, M. B. Moreira, M. Pivatto, A. V. G. Netto, Sergio de Albuquerque, F. B. Ferreira, R. J. De Oliveira, A. L. C. Resende, R. C. Lino, R. J. De Oliveira Junior, A. M. Da Costa Ferreira and W. Guerra, Inorg. Chim. Acta, 2020, 511, 119824.
(27) S. Ramakrishnan, E. Suresh, A. Riyasdeen, M. A. Akbarsha and M. Palaniandavar, Dalton Trans., 2011, 40, 3245.
(28) S. Poornima, K. Gunasekaran and M. Kandaswamy, Dalton Trans., 2015, 44, 16361-16371.
(29) R. R. Kumar, M. K. M. Subarkhan and R. Ramesh, RSC Adv., 2015, 5, 46760-46773.
(30) Y. Li, Z. Yang, M. Zhou and Y. Li, RSC Adv., 2017, 7, 49404-49422.
(31) A. Jayamani, S. Nagasubramanian, V. Thamilarasan, S. O. Ojwach and G. Gopu, Inorg. Chim. Acta, 2018, 482, 791-799.
(32) J. G. Deng, G. Su, P. Chen, Y. Du, Y. Gou and Y. Liu, Inorg. Chim. Acta, 2018, 471, 194-202.
(33) M. Niu, H. Li, X. Li, J. Dou and S. Wang, RSC Adv., 2015, 5, 37085-37095.
(34) J. Haribabu, K. Jeyalakshmi, Y. Arun, N. S. P. Bhuvanesh, P. T. Perumal and R. Karvembu, RSC Adv., 2015, 5, 46031-46049.

[^0]: *Corresponding author: E-mail; dhanraj_masram27@rediffmail.com; Tel.;
 +91-11-27666646

