Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information (ESI)

Cadmium doping for improving the efficiency and stability of carbon-based

CsPbIBr2 all-inorganic perovskite solar cells

Rufeng Wang^a, Haiming Zhang^{a,*}, Siqi Han^a, Yizhi Wu^a, Zhanning Hu^a, Guixiang Zhang^a, Haoxuan Liu^a,

Qingchen He^a, Xianjing Zhang^a

^a School of Physical Science and Technology, Tiangong University, Tianjin 300387, PR China

 $\label{eq:Fig.S1} \textbf{Fig.S1}. Statistical chart of grain sizes corresponding to SEM images of the CsPbIBr_2 perovskite film with 0\%-Cd, 0.25\%-Cd, 0.25\%-Cd,$

0.5%-Cd and 1%-Cd, respectively.

Fig. S2. The cross-sectional SEM images of the CsPbIBr₂ PSCs based on (a) 0%-Cd; (b) 0.25%-Cd; (c) 0.5%-Cd and (d) 1%-Cd.

Fig. S3. Energy dispersive X-ray (EDX) mapping images of the CsPbIBr2 film with 0.5%-Cd. The scale bar is 1µm.

Fig. S4. XPS spectra of the CsPbIBr $_2$ film (0.5%-Cd) for Cd 3d.

Fig. S5 PCE distribution histograms of CsPbIBr2 PSCs and CsPbIBr2 PSCs with 0.5%-Cd (15 devices).

Table S1. TRPL fitting results of the CsPbIBr₂ films with x%-Cd (x=0, 0.25, 0.5, 1).

samples	A_1	τ_1 (ns)	A_2	τ_2 (ns)	τ_{avg} (ns)
0%-Cd	0.96669	0.60398	0.11544	3.01125	1.50
0.25%-Cd	1.05582	0.59783	0.00983	12.66085	2.58
0.5%-Cd	1.00580	0.5382	0.05315	11.33478	6.22
1%-Cd	1.07784	0.64465	0.01074	8.58474	1.57

Table S2. Band energies of CsPbIBr2 films with x%-Cd determined by the UV-visible absorption spectra and UPS analysis.

Samples	$E_{cutoff}\left(eV\right)$	E _{oneset} (eV)	VB maximum (eV)	Band gap (eV)	CB minimum (eV)
0%-Cd	16.90	1.75	-6.07	2.05	-4.02
0.25%-Cd	16.91	1.62	-5.93	2.05	-3.88
0.5%-Cd	16.95	1.47	-5.74	2.05	-3.69
1%-Cd	16.92	1.67	-5.96	2.05	-3.91

Table S3. Summary of the photovoltaic performance parameters for CsPbIBr₂-based PSCs via different provskite preparation techniques.

Cell configuration ^{a)}	Perovskite fabrication	$V_{\rm oc}$	J _{sc}	FF	PCE	Ref
	method	[V]	[mA/cm ²]		[%]	
FTO/SnO2/CsPbIBr2/Carbon	Cd ²⁺ doping	1.19	9.76	0.56	6.79	This work
FTO/c-TiO ₂ /CsPbIBr ₂ /Au	Dual-source evaporation	0.959	8.70	0.56	4.70	32
FTO/c-TiO ₂ /CsPbIBr ₂ /Carbon	Precursor aging	1.142	9.11	0.63	6.55	21
FTO/SnO ₂ /CsPbIBr ₂ /Carbon	Mn ²⁺ doping	0.99	13.15	0.57	7.36	30
FTO/TiO ₂ /CsPbIBr ₂ /Carbon	Zn ²⁺ doping	1.26	10.87	0.66	9.04	S1
FTO/c-TiO ₂ /CsPbIBr ₂ /Carbon	Light processing	1.283	11.17	0.60	8.60	S2
FTO/c-TiO2/CsPbIBr2/Carbon	Intermolecular exchange	1.245	10.66	0.69	9.16	20
FTO/c-TiO ₂ /CsPbIBr ₂ /CuPc/Carbon	Li ⁺ doping	1.213	10.27	0.74	9.25	28
ITO/ZnO/CsPbIBr ₂ /Sprio-OMeTAD/Ag	One-step spin coating	1.04	8.78	0.525	4.8	S 3
FTO/NiO _x /CsPbIBr ₂ /MoO _x /Au	One-step spin coating	0.85	10.56	0.62	5.52	18
ITO/In2S3/CsPbIBr2/Sprio-OMeTAD/Au	Two-step annealing	1.090	7.76	0.66	5.59	23
FTO/TiO ₂ /CsPbIBr ₂ /Spiro-OMeTAD/Ag	Cu ²⁺ doping	1.20	11.90	0.649	9.32	45
FTO/TiO2/CsPbIBr2/PCBM/Au	Ba ²⁺ doping	1.19	11.91	0.74	10.51	31
FTO/SnO ₂ /C ₆₀ /CsPb _{0.75} Sn _{0.25} IBr ₂ / Spiro-OMeTAD/Au	Sn ²⁺ doping	1.21	12.57	0.758	11.53	29

a) spiro-OMeTAD = 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene.

References:

S1. Y. Guo, F. Zhao, Z. Li, J. Tao, D. Zheng, J. Jiang and J. Chu, Organic Electronics, 2020, 83, 105731.

S2. Q. Zhang, W. Zhu, D. Chen, Z. Zhang, Z. Lin, J. Chang, J. Zhang, C. Zhang and Y. Hao, ACS Applied Materials & Interfaces,

2019, **11**, 2997-3005.

S3. M. Aamir, T. Adhikari, M. Sher, N. Revaprasadu, W. Khalid, J. Akhtar and J.-M. Nunzi, New Journal of Chemistry, 2018, 42, 14104-14110.