Supporting Information

Single-step grown boron doped nanocrystalline diamond-carbon nanograss hybrid as an efficient supercapacitor electrode

Debosmita Banerjee^a, Kamatchi Jothiramalingam Sankaran^{b,c}, Sujit Deshmukh^a, Mateusz Ficek^d,

Chien-Jui Yehe, Jacek Rylf, I-Nan Line, Robert Bogdanowickzd, Aloke Kanjilala, Ken Haenenb,c,

Susanta Sinha Roya*

^aDepartment of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Gautam Buddha Nagar, Uttar Pradesh 201314, India.

^bInstitute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium.

^cIMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium.

^dDepartment of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdansk, Poland.

^eDepartment of Physics, Tamkang University, Tamsui, 251 Taiwan, Republic of China.

^fDepartment of Electrochemistry, Corrosion and Materials Engineering, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.

Peaks	Centre (cm ⁻¹)	FWHM (cm ⁻¹)	Intensity	
D	1352	80	9983.8	
G	1582	45	15061.9	
2D	2695.9	72	5160.1	
D+G	2942	134	731.0	

Table S1 Parameters obtained from Lorentzian fitting of Raman spectrum.

Table S2: Circuit parameters for equivalent circuit model obtained from EIS of HCNGs in 1 M Na_2SO_4 and 0.05 M Fe(CN)₆^{3-/4-} containing 1 M Na_2SO_4 solution.

Electrolytes	R _s	R _{CT1}	Q ₁	Q ₂	R _{CT2}	Q ₃	χ^2
Na ₂ SO ₄	69 Ω	100 Ω	45.9	3.67	2 kΩ	278	0.01
			μMho	μMho		μMho	
			$\alpha = 0.998$	$\alpha = 0.39$		$\alpha = 0.79$	
$Na_2SO_4 + Fe(CN)_6^{3-/4-}$	10 Ω	27.9 Ω	24.5	44.1	50 Ω	29.9	0.006
			μMho	μMho		μMho	
			$\alpha = 0.99$	α=0.616		α= 0.623	

Figure S1. Variation of specific capacitance for HCNGs in $1M Na_2SO_4$ (a) at different scan rates and (b) at different current densities. Variation of specific capacitance for HCNGs in redox species content $1 M Na_2SO_4$ (c) at different scan rates and (d) at different current densities.

Figure S2. Self-discharge performance of HCNG electrode in redox species contained 1 M Na_2SO_4 for 100 hours.

Figure S3. (a) Variation of capacitance retention of HCNG electrode during floating test carried out for 164 hours in 0.05 M $Fe(CN)_6^{-3/-4}$ contained 1 M Na_2SO_4 aqueous solution. (b) CV

response of the HCNG electrode before and after the floating test at 100 mV s⁻¹ scan rate in redox active electrolyte.