Supporting materials for:

Ternary PtFeCo Alloys on Graphene with Highly Electrocatalytic Activities for Methanol Oxidation

Hongfei Wang¹, Kefu Zhang¹, Jun Qiu¹, Juan Wu¹, Jingwen Shao¹, Huijuan Wang¹,

Yujuan Zhang², Jie Han², Yong Zhang³, Lifeng Yan^{1,*}

¹CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for

Physical Sciences at the Microscale, and Department of Chemical Physics, University

of Science and Technology of China, Hefei, 230026, P.R.China

² Yanchang Petroleum (Group) Co., Ltd., No.61 Tangyan Rd, Xi'an, Shaanxi,

P.R.China 710065

³The Northwest Research Institute of Chemical Industry Co.,Ltd, Xi'an, Shaanxi,

710061, P.R.China

results for all samples.						
Samples	Mass%	Elements	Atom%	Atom%		
	(Pt, ICP-		(feeding	(ICP-AES)		
	AES)		ratio)			
Pt ₃₀ Fe ₃₇ Co ₃₃ @G-7%	6.85%	Pt:Fe:Co	32:34:34	30:37:33		
Pt ₅₂ Fe ₂₉ Co ₁₉ @G-7%	6.93%	Pt:Fe:Co	50:25:25	52:29:19		
Pt ₆₄ Fe ₂₀ Co ₁₆ @G-7%	7.09%	Pt:Fe:Co	70:15:15	64:20:16		
Pt ₅₈ Fe ₄₂ @G-7%	6.87%	Pt:Fe	50:50	58:42		
Pt ₅₂ Co ₄₈ @G-7%	6.72%	Pt:Co	50:50	52:48		
Pt ₄₈ Fe ₂₅ Co ₂₇ @G-	9.88%	Pt:Fe:Co	50:25:25	48:25:27		
10%						
Pt ₅₁ Fe ₂₇ Co ₂₂ @G-4%	4.11%	Pt:Fe:Co	50:25:25	51:27:22		
Pt ₅₀ Fe ₂₈ Co ₂₂ @G-1%	1.03%	Pt:Fe:Co	50:25:25	50:28:22		

 Table S1. The inductively coupled plasma atomic emission spectroscopy (ICP-AES)

2θ/degre	Experimental	Theoretica	d ₍₁₁₁₎	Strain
e	lattice	l lattice	spacing	(%)
(111)	parameter	parameter	(nm)	
	(Å)	(Å)		
39.76	3.923		0.2265	
41.10	3.795	3.407	0.2191	3.27
40.66	3.838	3.545	0.2216	2.16
40.48	3.862	3.651	0.2230	1.55
	20/degre e (111) 39.76 41.10 40.66 40.48	20/degre Experimental e lattice (111) parameter (Å) (Å) 39.76 3.923 41.10 3.795 40.66 3.838 40.48 3.862	20/degreExperimentalTheoreticaelatticel lattice(111)parameterparameter(Å)(Å)(Å)39.763.92341.103.7953.40740.663.8383.54540.483.8623.651	20/degreExperimentalTheoreticad(111)elatticel latticespacing(111)parameterparameter(m)(Å)(Å)(Å)(A)39.763.9230.226541.103.7953.4070.219140.663.8383.5450.221640.483.8623.6510.2230

 Table S2. XRD values of all PtFeCo@G-7% samples.

Figure S1. the elemental weight composition of $Pt_{52}Fe_{29}Co_{19}@G-7\%$ as a function of

the reaction time.

Figure S2. EDX-area analyses of (a) Pt₃₀Fe₃₇Co₃₃@G-7%, (b) Pt₅₂Fe₂₉Co₁₉@G-7%,

and (c) $Pt_{64}Fe_{20}Co_{16}@G-7\%$ nanocomposites.

Figure S3. EDX-particle analyses of (a) Pt₃₀Fe₃₇Co₃₃@G-7%, (b) Pt₅₂Fe₂₉Co₁₉@G-

7%, and (c) Pt₆₄Fe₂₀Co₁₆@G-7% nanocomposites.

Figure S4. TGA curves of Pt₃₀Fe₃₇Co₃₃@G-7%, Pt₅₂Fe₂₉Co₁₉@G-7%, and

Pt₆₄Fe₂₀Co₁₆@G-7% nanocomposites.

Figure S5. CV curves of (a) Pt₃₀Fe₃₇Co₃₃@G-7%, (c) Pt₅₂Fe₂₉Co₁₉@G-7%, (e)

Pt₆₄Fe₂₀Co₁₆@G-7% electrodes in 0.5 M H₂SO₄ at 50 mV s⁻¹ from the 1st circle to the 50th circle; CV curves of (b) Pt₃₀Fe₃₇Co₃₃@G-7%, (d) Pt₅₂Fe₂₉Co₁₉@G-7%, (f)
Pt₆₄Fe₂₀Co₁₆@G-7% electrodes in 0.5 M H₂SO₄ + 0.5 M CH₃OH at 50 mV s⁻¹ from

the 1st circle to the 50th circle.

	onset potential of peak potential of		
	CO oxidation (V)	CO oxidation (V)	
Pt ₃₀ Fe ₃₇ Co ₃₃ @G-	0.44	0.57	
7%			
Pt ₅₂ Fe ₂₉ Co ₁₉ @G-	0.40	0.56	
7%			
Pt ₆₄ Fe ₂₀ Co ₁₆ @G-	0.45	0.60	
7%			
Pt/C	0.50	0.66	

Table S3. The onset potentials and peak potentials of CO oxidation for Pt₃₀Fe₃₇Co₃₃@G-7%, Pt₅₂Fe₂₉Co₁₉@G-7%, Pt₆₄Fe₂₀Co₁₆@G-7% and Pt/C

Figure S6. CV curves recorded at a sweep rate of 50 mV s⁻¹ in 0.5 M H_2SO_4 and 0.5

M CH₃OH aqueous solution for the 1st and 200th cycles.

Figure S7. (a) CV curves of Pt₄₈Fe₂₅Co₂₇@G-10%, Pt₅₂Fe₂₉Co₁₉@G-7%,

 $Pt_{51}Fe_{27}Co_{22}@G-4\%$ and $Pt_{50}Fe_{28}Co_{22}@G-1\%$ electrodes in 0.5 M H₂SO₄ at a scan rate of 50 mV s⁻¹; (b) Bar graph illuminating the mass activities (left) and specific

activities (right) at anodic peak potential.