Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Coupling amorphous cobalt hydroxide nanoflakes on Sr₂Fe_{1.5}Mo_{0.5}O_{5+δ} perovskite nanofibers to induce bifunctionality for water splitting

Beibei He^{*a}, Kun Tan ^a, Yansheng Gong ^a, Rui Wang ^a, Huanwen Wang ^a,

Ling Zhao *a, b

^{*a*} Department of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.

^b Zhejiang Institute, China University of Geosciences (Wuhan), Hangzhou, 311305, China

*Corresponding author. *E-mail address: <u>babyfly@mail.ustc.edu.cn</u> (Beibei He)

zhaoling@cug.edu.cn (Ling Zhao)

Figure S1. (a) SEM and (b) TEM images of Co(OH)₂, (c) N₂ adsorption-desorption isotherm of Co(OH)₂.

Relative Pressure (p/p₀)

0.4

0.6

0.8

1.0

0

0.0

0.2

Figure S2. TEM images of Co(OH)₂/SFM-NF sample (inset showing the corresponding SAED pattern).

Figure S3. EDS spectrum of Co(OH)₂/SFM-NF sample measured at position P1.

Figure S4. SEM images of (a) 5 nm $Co(OH)_2/SFM$ -NF and (b) 20 nm $Co(OH)_2/SFM$ -NF; LSV curves of as-prepared samples for (c) OER and (d) HER.

Figure S5. CV curves of (a) SFM, (b) SFM-NF, (c) $Co(OH)_2/SFM-NF$, (d) $Co(OH)_2$ measured with different scan rates of 10, 20, 40, 60, 80, 100, 120, and 140 mV s⁻¹ with a potential of 1.01-1.11 V vs. RHE; CV curves of (e) SFM, (f) SFM-NF, (g) $Co(OH)_2/SFM-NF$ and (h) $Co(OH)_2$ measured with a potential of 0.07-0.17 V. vs. RHE.

Figure S6. (a) Full XPS spectrum of SFM-NF and Co(OH)₂/SFM-NF samples, (b) High resolution XPS spectra of O 1s of Co(OH)₂ and Co(OH)₂/SFM-NF samples.

Figure S7. (a) XRD pattern of Co(OH)₂/SFM-NF electrode after OER durability test; XPS spectra of (b) Fe 2p and (c) Mo 3d for Co(OH)₂/SFM-NF after OER test.

Figure S8. (a) TEM images of Co(OH)₂/SFM-NF electrode after HER durability test, (b) XRD pattern of Co(OH)₂/SFM-NF electrode after HER durability test, (c) XPS spectra of Co 2p for Co(OH)₂/SFM-NF before and after HER test.

Catalyst	Current density	Cell voltage	Stability	Reference
	(10 mA cm ⁻²)	(V)	(h)	
Pt(-)/IrO ₂ (+)	10	1.58	30	This work
Co(OH) ₂ /SFM-NF	10	1.60	68	This work
A-PBSCF-H	10	1.62	12	1
SrNb _{0.1} Co _{0.7} Fe _{0.2} O ₃₋₈ -NR	10	1.68	30	2
NiFe LDHs	10	1.70	10	3
NiCo ₂ O ₄	10	1.65	20	4
NiFe/NiCo ₂ O ₄	10	1.67	10	5
NiCo ₂ S ₄	10	1.63	50	6
$NdBaMnO_{5^+\delta}$	10	1.67	30	7
3DOM-LFC	10	1.75	12	8
$La_{0.5}Ba_{0.25}Sr_{0.25}CoO_{2.9\delta}F_{0.1}$	10	1.66	13.3	9
CoNi(OH) _x	10	1.67	10	10
CoMoV LDH	10	1.61	20	11
Co(OH) ₂ -NA	10	1.64	20	12
Co _{0.75} Ni _{0.25} (OH) ₂ nanosheet	10	1.57	15	13
Co _{0.9} Fe _{0.1} (OH) _x -NF	10	1.62	30	14
$Na_{0.08}Ni_{0.9}Fe_{0.1}O_2$	16	1.60	12	15
Co(OH)2@Ni	10	1.64	20	16
Co(OH) ₂ /Ag/FeP	10	1.56	50	17

Table S1. Survey of overall water splitting stability with current density and cellvoltage of representative bifunctional electrocatalysts in 1 M KOH electrolytes.

Reference

- 1. B. Hua, M. Li, Y.-F. Sun, Y.-Q. Zhang, N. Yan, J. Chen, T. Thundat, J. Li and J.-L. Luo, *Nano Energy*, 2017, **32**, 247-254.
- 2. Y. Zhu, W. Zhou, Y. Zhong, Y. Bu, X. Chen, Q. Zhong, M. Liu and Z. Shao, *Advanced Energy Materials*, 2017, **7**.
- 3. J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan and M. Graetzel, *Science*, 2014, **345**, 1593-1596.
- 4. X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang and Z. Lin, *Angewandte Chemie-International Edition*, 2016, **55**, 6290-6294.
- C. Xiao, Y. Li, X. Lu and C. Zhao, *Advanced Functional Materials*, 2016, 26, 3515-3523.
- 6. A. Sivanantham, P. Ganesan and S. Shanmugam, *Advanced Functional Materials*, 2016, **26**, 4661-4672.
- J. Wang, Y. Gao, D. Chen, J. Liu, Z. Zhang, Z. Shao and F. Ciucci, *Acs Catalysis*, 2018, 8, 364-371.
- J. Dai, Y. Zhu, Y. Zhong, J. Miao, B. Lin, W. Zhou and Z. Shao, Advanced Materials Interfaces, 2019, 6.
- 9. B. Hua, M. Li, W. Y. Pang, W. Q. Tang, S. L. Zhao, Z. H. Jin, Y. M. Zeng, B. S. Amirkhiz and J. L. Luo, *Chem*, 2018, **4**, 2902-2916.
- 10. S. W. Li, Y. C. Wang, S. J. Peng, L. J. Zhang, A. M. Al-Enizi, H. Zhang, X. H. Sun and G. F. Zheng, *Advanced Energy Materials*, 2016, **6**.
- 11. J. Bao, Z. L. Wang, J. F. Xie, L. Xu, F. C. Lei, M. L. Guan, Y. Zhao, Y. P. Huang and H. M. Li, *Chemical Communications*, 2019, **55**, 3521-3524.
- 12. J. Zhang, C. Q. Dong, Z. B. Wang, C. Zhang, H. Gao, J. Z. Niu and Z. H. Zhang, *Electrochimica Acta*, 2018, **284**, 495-503.
- X. Wang, Z. Li, D. Y. Wu, G. R. Shen, C. Q. Zou, Y. Feng, H. Liu, C. K. Dong and X. W. Du, *Small*, 2019, 15.
- 14. Y. X. Liu, Y. W. Li, G. Yuan, J. F. Zhang, X. W. Zhang and Q. F. Wang, *Chemelectrochem*, 2019, **6**, 2415-2422.
- 15. B. C. Weng, F. H. Xu, C. L. Wang, W. W. Meng, C. R. Grice and Y. F. Yan, *Energy & Environmental Science*, 2017, **10**, 121-128.
- 16. Z. N. Wang, S. Ji, F. S. Liu, H. Wang, X. Y. Wang, Q. Z. Wang, B. G. Pollet and R. F. Wang, *Acs Applied Materials & Interfaces*, 2019, **11**, 29791-29798.
- 17. X. T. Ding, Y. G. Xia, Q. N. Li, S. Dong, X. L. Jiao and D. R. Chen, Acs Applied Materials & Interfaces, 2019, **11**, 7936-7945.