Supporting Information for

N&S co-doped carbon nanofiber network embedded with ultrafine

NiCo nanoalloy for efficient oxygen electrocatalysis and Zn-air battery

Chaojun Liu, ^a Zhuang Wang,^a Xin Zong, ^a Yingmin Jin, ^a Dong Li, ^a Yueping Xiong^{*} and Gang Wu^{*}

^{a.} Department MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China.

^bDepartment of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.

Corresponding authors: <u>ypxiong@hit.edu.cn</u> (Y. Xiong) and <u>gangwu@buffalo.edu</u> (G. Wu)

Figure S1-S33 Table S1-S5

Figure S1 Schematic illustration of the formation of NSCFs/Ni-Co-NiCo₂O.

Figure S2 SEM image of a) CFs/Ni-Co-Ni₂CoO, b) CFs/Ni-Co-NiCoO, c) CFs/Ni-Co-NiCo₂O, d)

CFs/Ni-Co-NiCo₃O.

Figure S3 Raman spectra of CFs/Ni-Co-Ni₂CoO, CFs/Ni-Co-NiCoO, CFs/Ni-Co-NiCo₂O, and CFs/Ni-Co-NiCo₃O.

Figure S4 XRD analyses of CFs/Ni-Co-Ni₂CoO, CFs/Ni-Co-NiCoO, CFs/Ni-Co-NiCo₂O, and CFs/Ni-Co-NiCo₃O.

Figure S5 CV curves of the a) CFs/Ni-Co-Ni₂CoO, b) CFs/Ni-Co-NiCoO, c) CFs/Ni-Co-NiCo₂O, d) CFs/Ni-Co-NiCo₃O catalysts obtained in 1.0 M KOH with different scan rates between a potential range of 1.25-1.35 V *vs.* RHE.

Figure S6 The corresponding C_{dl} values at 1.3 V *vs*. RHE of CFs/Ni-Co-Ni₂CoO, CFs/Ni-Co-NiCo₂O, and CFs/Ni-Co-NiCo₃O.

Figure S7 OER polarization curves of CFs/Ni-Co-Ni₂CoO, CFs/Ni-Co-NiCoO, CFs/Ni-Co-NiCo₂O, and CFs/Ni-Co-NiCo₃O.

Figure S8 *E*_{onset} and *E*₁₀ values of CFs/Ni-Co-Ni₂CoO, CFs/Ni-Co-NiCoO, CFs/Ni-Co-NiCo₂O, and CFs/Ni-Co-NiCo₃O.

OER catalytic activity measurement was performed in a standard three-electrode system. The OER catalytic activities of different nitrate ratio samples were measured in 1.0 M KOH by LSVs (Figure S7 and Figure S8). As expected, the CFs/Ni-Co-NiCo₂O sample shows the lowest E_{onset} and E_{10} , which indicates the excellent OER catalytic performance.

Figure S9 The Nyquist plots of different molar ratios examined at 1.5V vs. RHE for OER.

Figure S10 The corresponding Tafel plots of CFs/Ni-Co-Ni₂CoO, CFs/Ni-Co-NiCoO, CFs/Ni-Co-NiCo₂O, and CFs/Ni-Co-NiCo₃O.

Figure S9 and Figure S10 show the Nyquist plots and Tafel plots of different samples. All EIS data can be fitted perfected by using the Equivalent electrical circuit (EEC) shown the inset figure of Figure S9. The lowest Rct value (89 Ω) and the smallest Tafel slope (87.15 mV dec-1) all correspond to a more favorable OER kinetics of CFs/Ni-Co-NiCo₂O.

Figure S11 The ORR polarization curves of CFs/Ni-Co-Ni₂CoO, CFs/Ni-Co-NiCoO, CFs/Ni-Co-

NiCo₂O, and CFs/Ni-Co-NiCo₃O.

Figure S12 The ORR Tafel plots of CFs/Ni-Co-Ni₂CoO, CFs/Ni-Co-NiCoO, CFs/Ni-Co-NiCo₂O, and CFs/Ni-Co-NiCo₃O.

Figure S13 The SEM images of a) CFs, b) NSCFs, c) NSCFs/Ni-NiO, and d) NSCFs/Co-CoO.

Figure S14 TEM image of CFs/Ni-Co-NiCo₂O.

Figure S15 SEM image of NSCFs/Ni-Co-NiCo₂O.

Figure S16 TEM image of NSCFs/Ni-Co-NiCo₂O.

Figure S17 HAADF-STEM image of NSCFs/Ni-Co-NiCo₂O.

Figure S18 EDS pattern for NSCFs/Ni-Co-NiCo₂O catalyst.

Table S1 Element mass	percentages for NSCFs/Ni-Co-NiCo2O	measured by EDX.
-----------------------	------------------------------------	------------------

Element	Mass percentages
Ni	1.47 %
Со	3.37 %
S	0.94 %
0	3.28 %
С	90.94 %

Figure S19 Elemental mapping of NSCFs/Ni-Co-NiCo₂O.

Table S2 Element mass percentages for NSCFs/Ni-Co-NiCo₂O measured by ICP.

Element	Mass percentages
Ni	11.78 %
Со	23.28 %

Table S3 Element mass percentages for NSCFs/Ni-Co-NiCo₂O measured by XPS.

Element	Mass percentages
Ni	3.12 %
Со	4.84 %
Ν	2.22 %
S	2.17 %
0	11.43 %
С	76.22 %

Figure S20 XPS survey spectra of CFs, NSCFs, NSCFs/Ni-NiO, NSCFs/Co-CoO, CFs/Ni-Co-

NiCo2O, NSCFs/Ni-Co-NiCo2O.

Figure S21 OER polarization curves of CFs, NSCFs, NSCFs/Ni-NiO, NSCFs/Co-CoO, CFs/Ni-Co-NiCo₂O, NSCFs/Ni-Co-NiCo₂O, and IrO₂.

Figure S22 The corresponding Tafel plots of CFs, NSCFs, NSCFs/Ni-NiO, NSCFs/Co-CoO, CFs/Ni-Co-NiCo₂O, NSCFs/Ni-Co-NiCo₂O, and IrO₂.

Figure S23 The Nyquist plots of CFs, NSCFs, NSCFs/Ni-NiO, NSCFs/Co-CoO, CFs/Ni-Co-NiCo₂O, NSCFs/Ni-Co-NiCo₂O, and IrO₂ at 1.5V vs. RHE for OER.

Figure S24 CV curves of the a) CFs, b) NSCFs, c) NSCFs/Ni-NiO, d) NSCFs/Co-CoO, e) CFs/Ni-Co-NiCo₂O, f) NSCFs/Ni-Co-NiCo₂O catalysts obtained in 1.0 M KOH with different scan rates between a potential range of 1.25-1.35 V *vs*. RHE.

Figure S25 The corresponding C_{dl} values at 1.3 V *vs*. RHE of CFs, NSCFs, NSCFs/Ni-NiO, NSCFs/Co-CoO, CFs/Ni-Co-NiCo₂O, NSCFs/Ni-Co-NiCo₂O catalysts.

Figure S26 The prolonged chronopotentiometric response of NSCFs/Ni-Co-NiCo₂O.

Figure S27 SEM image of the NiCo₂-N₃-S₃-C after chronopotentiometry measurement.

Figure S28 SEM image of the NiCo₂-N₃-S₃-C after chronopotentiometry measurement.

Figure S29 a) High resolution XPS spectra of Co 2p for NSCFs/Ni-Co-NiCo₂O after OER. b) High resolution XPS spectra of Ni 2p for NSCFs/Ni-Co-NiCo₂O after OER.

Figure S30 ORR polarization curves of CFs, NSCFs, NSCFs/Ni-NiO, NSCFs/Co-CoO, CFs/Ni-

Co-NiCo₂O, NSCFs/Ni-Co-NiCo₂O, and Pt/C.

Figure S31 The corresponding Tafel plots of CFs, NSCFs, NSCFs/Ni-NiO, NSCFs/Co-CoO, CFs/Ni-Co-NiCo₂O, NSCFs/Ni-Co-NiCo₂O, and Pt/C.

Figure S32 The electron transfer number (n) and HO₂⁻ yield ratio of CFs, NSCFs, NSCFs/Ni-NiO, NSCFs/Co-CoO, CFs/Ni-Co-NiCo₂O, NSCFs/Ni-Co-NiCo₂O, and Pt/C.

Figure S33 the photograph of the home-made Zn-air battery mold.

Table S4 Comparison of the OER and ORR performance of NSCFs/Ni-Co-NiCo₂O

Catalyst	OER&ORR performance			Ref.	
	OER E _{j=10} / V	ORR E _{1/2} / V	ΔΕ / V	Electroly te OER ORR	
NSCFs/Ni-Co- NiCo ₂ O	1.498	0.806	0.69	1.0 M	This work
NiCo/NLG-270	1.570	0.820	0.750	1.0 M 0.1 M	<i>Adv. Mater.</i> 2018 , 30, 1800005
Fe@C-NG/NCNTs	1.680	0.840	0.840	1.0 M 0.1 M	J. Mater. Chem. A 2018, 6, 516-626
Meso/micro-FeCo- N _x -CN-30	1.670	0.886	0.784	1.0 M 0.1 M	Angew. Chem. Int. Edit. 2018 , 57, 1856-1862
CoFe/N-GCT	1.670	0.79	0.88	0.1 M	Angew. Chem. Int. Edit. 2018, 57, 16166-16170
Fe/Co-N/S-Cs	1.515	0.832	0.683	0.1 M	<i>Appl. Catal. B Environ.</i> 2019 , 241, 95-103
FeCo/FeCoNi@N CNTs-HF	1.608	0.850	0.758	0.1 M	<i>Appl. Catal. B Environ.</i> 2019 , 254, 26-36
CoNi/BCF	1.600	0.800	0.800	0.1 M	<i>Appl. Catal. B Environ.</i> 2019 , 240, 193-200
In-CoO/CoP FNS	1.595	0.810	0.790	0.1 M	Small. 2019 , 15, 1904210
CoPi/NPGA	1.570	0.800	0.770	1.0 M 0.1 M	ACS Sustain. Chem. Eng. 2018, 6, 9793-9803
CoS ₂ /SKJ	1.580	0.840	0.740	0.1 M	ACS Nano 2019 , 13, 7062-7072
CoIn ₂ S ₄ /S-rGO	1.600	0.820	0.780	0.1 M	<i>Adv. Energy Mater.</i> 2018 , 8, 1802263
NiCo ₂ O ₄ /Co,N- CNTs NCs	1.569	0.862	0.707	1.0 M	<i>ACS Sustain. Chem. Eng.</i> 2018 , 6, 10021-10029
CuCo ₂ O ₄ /N-CNTs	1.702	0.802	0.900	0.1 M	<i>Adv. Funct. Mater.</i> 2017 , 27 1701833
Co-POC	1.700	0.830	0.870	0.1 M	<i>Adv. Mater.</i> 2019 , 31, 1900592

with other reported electrocatalysts test under similar conditions.

Table S5 Comparison of the Zn-air batteries performance of NSCFs/Ni-Co-NiCo₂O

Catalyst	Capability (mW cm ⁻²)	Cyclability	Reference
NSCFs/Ni-Co- NiCo2O	171.24	Lifetime of 380 h @ 10 mA cm ⁻²	This work
Co-POC	78.0	Lifetime of 25 h @ 2 mA cm ⁻²	Adv. Mater. 2019 , 31, 1900592
CoIn ₂ S ₄ /S-rGO	133	Lifetime of 50 h @ 10 mA cm ⁻²	Adv. Energy Mater. 2018, 8, 1802263.
NCO-250	166	Lifetime of 75 h @ 10 mA cm ⁻²	ACS. Appl. Mater. Interfaces 2019 , 11, 4915-4921.
FeCo@MNC	115	Lifetime of 24 h @ 20 mA cm ⁻²	Appl. Catal. B: Environ. 2019, 244, 150-158.
CoNiFe-S MNs	140	Lifetime of 40 h @ 2 mA cm ⁻²	Adv. Energy Mater. 2018, 8, 1801839.
CoS ₂ /SKJ	104	Lifetime of 330 h @ 25 mA cm ⁻²	ACS Nano. 2019 , 6, 7062- 7072.
Co-N-CNTs	101	Lifetime of 15 h @ 2 mA cm ⁻²	<i>Adv. Funct. Mater.</i> 2018 , 28, 1705048
Co/Co _x M _y	125.2	Lifetime of 166 h @ 10 mA cm ⁻²	Small. 2019, 1901518.
C-MOF-C ₂ -900	105	Lifetime of 120 h $@ 2 \text{ mA cm}^{-2}$	<i>Adv. Mater.</i> 2018, 30, 1705431

 $@ 2 \text{ mA cm}^{-2}$

with other reported electrocatalysts test under similar conditions

1705431.