Supporting Information for

Template-assisted loading of Fe₃O₄ nanoparticles inside hollow carbon

"rooms" to achieve high volumetric lithium storage

Yongpeng Cui,¹ Wenting Feng,¹ Wei Liu,^{*} Jiajia Li, Yuan Zhang, Yongxu Du, Mingzhu Li, Wei Huang, Huanlei Wang, Shuang Liu

School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, People's Republic of China.

¹ The authors Yongpeng Cui and Wenting Feng contributed equally to this paper.

*Email: weiliu@ouc.edu.cn

Figure S1. Schematic diagram of the synthesis process for HCR materials.

Figure S2. SEM micrographs of HCR materials.

Figure S3. TEM micrographs of the HCR@Fe₃O₄ materials.

Figure S4. Raman spectra of (a) HCR and (b) HCR@Fe₃O₄.

Figure S5. CV curves of pure Fe_3O_4 electrode.

Figure S6. Galvanostatic charge-discharge curves of (a) HCR, (b) pure Fe_3O_4 , and (c) HCR@Fe₃O₄ electrodes at the fifth cycle test at each current density.

Figure S7. Determination of the b-value according to the relationship between peak current and scan rate.

Figure S8. TEM micrographs of HCR@Fe₃O₄ electrode after a cycling test.

Figure S9. Raman spectra of cycled HCR and HCR@Fe₃O₄ electrode after a cycling test.

Figure S10. Ragone plots of the present HCR@Fe₃O₄//AC LIHC device with different mass match. (a) Volumetric energy/power density. (b) Gravimetric energy/power density.