Supporting Information

The magnetic Fe₃O₄ encapsulated VAN@MIL-101(Fe) with mixed-valence sites and mesoporous as efficient bifunctional water splitting photocatalyst

Yuan Guo,^a Chao Feng,^a Shanshan Qiao,^a Shixin Wang,^a Tingxiang Chen,^a Li Zhang,^a Yansong Zhao,^b Jide

Wang*a

^aKey Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous

Region, Xinjiang University, Urumqi 830046, Xinjiang, China

^bDepartment of Safety, Chemistry and Biomedical Laboratory Sciences, Faculty of Engineering and Science,

Western Norway University of Applied Sciences, Inndalsveien28,5063 Bergen, Norway

* Corresponding author. E-mail: awangjd@sina.cn

Fig. S1 ¹H-NMR spectra analysis of the dissolved MIL-101-Fe. (¹H NMR (400 MHz, DMSO) δ 7.86 (s, 1H), 4.76 (s, 3H)).

Fig. S2 ¹H-NMR spectra analysis of the dissolved VAN@MIL-101(Fe). (¹H NMR (400 MHz, DMSO) δ 8.08 (s, 1H), 4.76 (s, 33H), 3.13 (s, 7H)).

Fig. S3 ¹H-NMR spectra analysis of the dissolved Fe₃O₄/VAN@MIL-101(Fe). (¹H NMR (400 MHz, DMSO) δ 8.06 (s, 1H), 4.70 (s, 52H)).

Table S1. BET surface areas and pore features of hierarchical porous MIL-101(Fe), VAN@MIL-101(Fe) and Fe₃O₄/VAN@MIL-101(Fe).

Sample	$\mathbf{S}_{\text{BET}}^{a}$	Pore volumes (cm ³ /g)		
	(m^{2}/g)	$V_{total}{}^{b}$	$V_{\text{micro}}{}^{c}$	$V_{\text{meso}}{}^{d}$
MIL-101(Fe)	1613	1.370	0.535	0.584
VAN@MIL-101(Fe)	2389	1.576	0.422	0.959
Fe ₃ O ₄ /VAN@MIL-101(Fe)	869	0.802	0.216	0.593

^a **SBET**: Brunauer–Emmett–Teller (BET) surface area. ^b **Vtotal**: Total pore volume calculated from the nitrogen adsorption data at $P/P_0 = 0.998$. ^c **Vmicro**: Micropore volume obtained by the t-plot method. ^d **Vmeso**: Mesopore volume calculated by the Barrett–Joyner–Halenda (BJH) adsorption method.

Fig. S4 SEM images of the MIL-101(Fe) regulated by vanillin obtained in DMF at 110 °C for 20h, and the MIL-10(Fe) regulated by vanillin samples prepared with different molar ratios of H₂BDC and vanillin. a.b: $n(H_2BDC):n(vanillin)=1:1;$ c.d: 1:5; e.f: 1:7; g.h: 1:8; i.j: 1:10.

Fig. S5 SEM images of the MIL-101(Fe) regulated by vanillin obtained in DMF at 110 °C for 20 h, and the MIL-101(Fe) regulated by vanillin samples prepared with different molar ratios of FeCl₃·6H₂O and H₂BDC. a.b:n(FeCl₃·6H₂O):n(H₂BDC)=1:2; c,d: 7:1; e: 10:1;f: 20:1.

Table S2. Reference experiments about photocatalytic oxidation of water for catalysts (MIL-101(Fe), VAN@MIL-101(Fe)

Catalyst	Electron acceptor	Photosensitizer	Irradiation	OER activity
	$Na_2S_2O_8$	$[Ru(bpy)_3]^{2+}$	Yes	No
MIL-101(Fe)	-	$[Ru(bpy)_3]^{2+}$	Yes	No
VAN@MIL-101(Fe)	-	$[Ru(bpy)_3]^{2+}$	Yes	No
Fe ₃ O ₄ / VAN@MIL-101(Fe)	-	$[Ru(bpy)_3]^{2+}$	Yes	No
MIL-101(Fe)	$Na_2S_2O_8$	-	Yes	No
VAN@MIL-101(Fe)	$Na_2S_2O_8$	-	Yes	No
Fe ₃ O ₄ / VAN@MIL-101(Fe)	$Na_2S_2O_8$	-	Yes	No
MIL-101(Fe)	$Na_2S_2O_8$	$[Ru(bpy)_3]^{2+}$	No	No
VAN@MIL-101(Fe)	$Na_2S_2O_8$	$[Ru(bpy)_3]^{2+}$	No	No
Fe ₃ O ₄ / VAN@MIL-101(Fe)	$Na_2S_2O_8$	$[Ru(bpy)_3]^{2+}$	No	No
MIL-101(Fe)	$Na_2S_2O_8$	$[Ru(bpy)_3]^{2+}$	Yes	Yes
VAN@MIL-101(Fe)	$Na_2S_2O_8$	$[Ru(bpy)_3]^{2+}$	Yes	Yes
Fe ₃ O ₄ / VAN@MIL-101(Fe)	$Na_2S_2O_8$	$[Ru(bpy)_3]^{2+}$	Yes	Yes

and Fe₃O₄/ VAN@MIL-101(Fe)) under different catalytic conditions (1 mg catalyst, 1.0×10^{-3} M [Ru(bpy)₃](ClO₄)₂, 20.0 $\times 10^{-3}$ M Na₂S₂O₈, 80 $\times 10^{-3}$ M sodium borate buffer (initial pH=10.0)).

Table S3. Reference experiments about photocatalytic reduction of water for catalysts (MIL-101(Fe), VAN@MIL-101(Fe) and Fe₃O₄/ VAN@MIL-101(Fe)) under different catalytic conditions (5mg catalysts, 1 mL triethanolamine (TEOA) and 9 mL H₂O, total reaction volume 10 mL).

Catalyst	Reaction system	Irradiation	HER activity
-	10% TEOA+90% H ₂ O	Yes	No
MIL-101(Fe)	100% H ₂ O	Yes	No
VAN@MIL-101(Fe)	100% H ₂ O	Yes	No
Fe ₃ O ₄ / VAN@MIL-101(Fe)	100% H ₂ O	Yes	No
MIL-101(Fe)	10% TEOA+90% H ₂ O	No	No
VAN@MIL-101(Fe)	10% TEOA+90% H ₂ O	No	No
Fe ₃ O ₄ / VAN@MIL-101(Fe)	10% TEOA+90% H ₂ O	No	No
MIL-101(Fe)	10% TEOA+90% H ₂ O	Yes	No
VAN@MIL-101(Fe)	10% TEOA+90% H ₂ O	Yes	Yes
Fe ₃ O ₄ / VAN@MIL-101(Fe)	10% TEOA+90% H ₂ O	Yes	Yes

 Table S4. Comparison of the catalytic performance of photocatalytic oxidation of water about different catalysts of other works.

Catalyst	Reaction condition	Evolved oxygen	Ref.
Fe ₃ O ₄ /VAN@MIL-101(Fe)	300 W Xe lamp ($\lambda \ge 420$ nm); 1 mg	360000 µmol/g/h	This
	catalyst; 1.0×10 ⁻³ M [Ru(bpy) ₃] (ClO ₄) ₂ ,		work
	$20.0 \times 10^{-3} \ M \ Na_2S_2O_8, \ 80 \ \times \ 10^{-3} \ M$		
	sodium borate buffer (initial pH=10.0).		
VAN@MIL-101(Fe)	300 W Xe lamp ($\lambda \ge 420$ nm); 1 mg	269400 µmol/g/h	This
	catalyst; 1.0×10^{-3} M [Ru(bpy) ₃] (ClO ₄) ₂ ,		work
	$20.0 \ \times \ 10^{-3} \ M \ Na_2S_2O_8, \ 80 \ \times \ 10^{-3} \ M$		
	sodium borate buffer (initial pH=10.0).		
MIL-101(Fe)-NH ₂	300 W Xe lamp ($\lambda \ge 420$ nm); 1 mg	123660 µmol/g/h	[1]
	catalyst; 1.0×10^{-3} M [Ru(bpy) ₃] (ClO ₄) ₂ ,		
	$20.0 \ \times \ 10^{-3} \ M \ Na_2S_2O_8, \ 80 \ \times \ 10^{-3} \ M$		
	sodium borate buffer (initial pH=10.0).		
MIL-101(Fe)	300 W Xe lamp ($\lambda \ge 420$ nm); 1 mg	219000 µmol/g/h	[1]
	catalyst; 1.0×10^{-3} M [Ru(bpy) ₃] (ClO ₄) ₂ ,		
	$20.0 \ \times \ 10^{-3} \ M \ Na_2S_2O_8, \ 80 \ \times \ 10^{-3} \ M$		
	sodium borate buffer (initial pH=10.0).		
Cu-ZIF-400	Catalyst (0.20 g/L); NaPi buffer solution	53.4 µmol/g/h	[2]
	(pH 7.0, 10.0 mL); Na ₂ S ₂ O ₈ (5.0 mM);		
	[Ru(bpy) ₃]Cl ₂ (1.0 mM); LED lamp, λ =		
	420 nm		
MIL-100(Fe)	Catalyst (15 mg); acetate buffer (100	6.06 µmol/g/h	[3]
	mM, pH = 4) or deionized water (pH =		
	6.8); NaIO ₃ (5.0 mM); LED lamp, λ =		
	420 nm		
MIL-100(Fe)@BiVO ₄	Catalyst (15 mg); acetate buffer (100	333.3 µmol/g/h	[3]
	mM, pH = 4) or deionized water (pH =		
	6.8); NaIO ₃ (5.0 mM); LED lamp, λ =		
	420 nm		

Red TiO_2 - RuO_2	100 mg TiO_2 with RuO_2 modification	81.6 µmol/g/h	[4]
co-catalyst	was dispersed in 100 mL aqueous		
	solution containing 0.85 g AgNO ₃ ; The		
	reaction temperature:10 °C; 300 W Xe		
	lamp ($\lambda = 420$ nm).		
Mo doped Bi ₂ WO ₆	0.1 g of photocatalysts; 0.1 M NaOH;	147.2 µmol/g/h	[5]
	$0.02~M$ $Na_2S_2O_8;100~mL$ water; 300 W		
	Xeon lamp, $\lambda > 420$ nm		
g-C ₃ N ₄ /BiVO ₄	0.02 g photocatalysts; 0.05 M AgNO ₃ ; 12	328 µmol/g/h	[6]
	mL water; 300 W Xeon lamp, $\lambda > 420$		
	nm		
0.5% FeOOH NSs/BiVO ₄	0.1 g photocatalyst; 0.85 g of AgNO ₃ ;	1130.0 µmol/g/h	[7]
	270 mL of water; 300 W Xe lamp ($\lambda >$		
	400 nm).		
Pt@Cu ₂ O/WO ₃	0.300 g photocatalyst; 200 mL of 0.01 M	1238.6 µmol/g/h	[8]
	aqueous AgNO ₃ solution; 300 W Xe		
	lamp without cut-off filter		
Co@Co ₃ O ₄	5 mg photocatalysts; 80 mM Na ₂ S ₂ O ₈ ; 10	2278 µmol/g/h	[9]
	mL 0.1 M NaOH (pH = 13); 20 mL		
	water; 300 W, Xe lamp, $\lambda > 420$ nm		
BiO _{2-x} UTNSs	20 mg photocatalysts; 2 mg methyl	2715.4 µmol/g/h	[10]
	viologen; 80 mL water; 300 W Xe lamp,		
	AM 1.5 G		

Table S5. Comparison of the catalytic performance of photocatalytic reduction of water about different catalysts of other works.

_

Catalys	t	Reaction condition	Evolved hydrogen	Ref.
Fe ₃ O ₄ / VAN@M	IL-101(Fe) 3	400 W Xe lamp ($\lambda \ge 420$ nm); 5 mg	584 µmol/g/h	This
	с	atalysts, 10% TEOA + 90% H ₂ O, total		work
	r	eaction volume 10 mL.		

VAN@MIL-101(Fe)	300 W Xe lamp ($\lambda \ge 420$ nm); 5 mg	480 µmol/g/h	This
	catalysts, 10% TEOA + 90% H_2O , total		work
	reaction volume 10 mL.		
NH ₂ -MIL-125/TiO ₂	50 mg catalysts, 60 mL Na ₂ S.9H ₂ O (0.2	490 µmol/g/h	[11]
	M) and Na ₂ SO ₃ (0.3 M); 300W Xe lamp (λ		
	= 420 nm)		
ZIF-8	Methanol (CH ₃ OH) was used as a	0.01 µmol/g/h	[12]
	sacrificial electron donor; Xe lamp		
	irradiation (AM 1.5 G, 100 mW cm ⁻²).		
MoS ₂ @ZIF-8	Methanol (CH ₃ OH) was used as a	68.4 µmol/g/h	[12]
	sacrificial electron donor; Xe lamp		
	irradiation (AM 1.5 G, 100 mW cm ⁻²).		
15.0 wt%MOC-16/g-C ₃ N ₄	300 W Xe lamp ($\lambda \ge 420$ nm); 10 mg	515 µmol/g/h	[13]
	catalysts, 2 mL TEOA + 18 mL H_2O , total		
	reaction volume 20 mL.		
Cu ₂ O/C ₃ N ₄	0.1 g photocatalysts; 180 mL	241.3 µmol/g/h	[14]
	triethanolamine (TEOA); 35±5°C; 20 mL		
	water; 300 W Xe lamp, $\lambda > 420$ nm		
Cu/Cu ₂ O@NC	2 mg of photocatalysts; 50 mL CH ₃ OH	379.6 µmol/g/h	[15]
	(10%); 300 W Xeon lamp, $\lambda > 420$ nm		
Au/TiO ₂	20 mg photocatalysts; 80 mL water; 300 W	120 µmol/g/h	[16]
	Xe lamp, $\lambda > 420$ nm		
M-Doped La ₂ Ti ₂ O ₇	1 g photocatalysts; 500 mL water; High-	400 µmol/g/h	[17]
	pressure Hg lamp (Ace Glass Inc., 450 W)		
Ti ₃ C ₂ T _x /CdS	0.300 g photocatalyst; 80 ml of 10 vol.%	473 µmol/g/h	[18]
	lactic acid; 300 W Xe lamp, $\lambda > 420$ nm		
CdS/Cu ₇ S ₄ /g-C ₃ N ₄	dispersed into 100 mL aqueous solution	357 umol/g/h	[19]
	containing 0.35 M Na ₂ S and 0.25 M	· · · · · · · · · · · · · · · · · · ·	[-,]
	Na ₂ SO ₃ ; 300 W Xe lamp, $\lambda > 420$ nm		
	2 J/ ··· F/ ·····		

Fig. S6 (a) Recycle study of MIL-101(Fe) in the light-driven water oxidation reaction; (c), (d) Recycle study of $Fe_3O_4/VAN@MIL-101(Fe)$ in the light-driven water oxidation reaction and water reduction reaction, respectively, the reaction system was evacuated after each run.

Fig. S7 SEM images of Fe₃O₄/VAN@MIL-101(Fe) recovered after 5 cycles: (a,b) after photocatalytic OER; (c,d) after photocatalytic HER.

Fig. S8 Comparison of XRD of fresh Fe₃O₄/VAN@MIL-101(Fe) with recycled Fe₃O₄/ VAN@MIL-101(Fe) in OER and HER after 5 cycles.

References

- 1. L. Chi, Q. Xu, X. Liang, J. Wang and X. Su, Small (Weinheim an der Bergstrasse, Germany), 2016, 12.
- 2. Y. Zhang, X. Zhou, F. Zhang, T. Tian, Y. Ding and H. Gao, J. Catal., 2017, 352, 246-255.
- 3. Q. Han, Y. Dong, C. Xu, Q. Hu, C. Dong, X. Liang and Y. Ding, ACS Appl. Mater. Inter., 2020, 12, 10410-10419.
- X. Hong, J. Tan, H. Zhu, N. Feng, Y. Yang, J. T. S. Irvine, L. Wang, G. Liu and H.-M. Cheng, *Chem–Eur. J.*, 2019, 25, 1787-1794.
- 5. Y. Hu, A. Etogo, R. Liu, J. Ren, L. Qi, C. Zheng, J. Ning and Y. Zhong, J. Mater. Chem. A, 2016, 4.
- 6. H. J. Kong, D. H. Won, J. Kim and S. Woo, *Chem. Mater.*, 2016, 28.
- 7. G. Ge, M. Liu, C. Liu, W. Zhou, D. Wang, L. Liu and J. Ye, J. Mater. Chem. A, 2019, 7, 9222-9229.
- 8. H. Gong, Y. Zhang, Y. Cao, M. Luo, Z. Feng, W. Yang, K. Liu, H. Cao and H. Yan, Appl. Catal. B-Environ., 2018, 237.
- 9. D. Wang, J. Guo, D. Hu, Q. Xu, L. Zhang and J. Wang, ACS Sustain. Chem. Eng., 2018, 6, 8300-8307.
- 10. B. Sun, Y. Qian, Z. Liang, Y. Guo, Y. Xue, J. Tian and H. Cui, Sol. Energ. Mat. Sol. C., 2019, 195, 309-317.
- R. Bibi, H. Huang, M. Kalulu, Q. Shen, L. Wei, O. Oderinde, N. Li and J. Zhou, ACS Sustain. Chem. Eng., 2018, 6, 8856–8867.
- 12. R. Ren, H. Zhao, X. Sui, X. Guo, X. Huang, Y. Wang, Q Dong and J. Chen, Catalysts, 2019, 9, 89-98.
- 13. Y. Wang, L. Liu, D. Wu, J. Guo, J. Shi, J. Liu and C. Su, Chin. J. Catal., 2019, 40, 1198-1204.
- 14. J. Chen, S. Shen, P. Guo, M. Wang, P. Wu, X. Wang and L. Guo, *Appl. Catal. B-Environ.*, 2014, **152-153**, 335-341.
- 15. L. Lu, X. Xu, J. Yan, F. N. Shi and Y. Huo, *Dalton T.*, 2018, 47, 2031-2038.
- 16. O. Rosseler, M. V. Shankar, M. K.-L. Du, L. Schmidlin, N. Keller and V. Keller, J. Catal., 2010, 269, 179-190.
- 17. D. Hwang, H. Kim, J. S. Lee, J. Kim, W. Li and S. Oh, J. Phys. Chem. B, 2005, 109, 2093-2102.
- 18. Y. Yang, D. Zhang and Q. Xiang, *Nanoscale*, 2019, 11.
- 19. J. Chu, X. Han, Z. Yu, Y. Du and P. Xu, ACS Appl. Mater. Inter., 2018, 10.
- 20. D. Saadetnejad and R. Yıldırım, Int. J. Hydrogen Energ., 2018, 43, 1116-1122.