Supporting Information

Polyoxometalates encapsulated into hollow double-shelled nanospheres as amphiphilic nanoreactors for effective oxidative desulfurization

Huifang Liu, Zhen Li, Jing Dong, Dan Liu, Chengpeng, Liu, Yingnan Chi, * Changwen Hu

Materials	Surface area	Pore volume	Average pore	
	(m²/g)	(cm ³ /g)	Diameter (Å)	
PMo12/AmHMSiO2@C	57	0.54	0.8	
AmHMSiO ₂ @C	229	0.77	2.4	
HMSiO ₂ @C	740	1.57	2.5	

Table S1. Surface area and porosity data of PMo₁₂/AmHMSiO₂@C, AmHMSiO₂@C and HMSiO₂@C.

Table S2. The elemental analysis of $PMo_{12}/AmHMSiO_2@C$ nanoreactor.

Sample	Mo	Р	С	Н	Ν
PMo ₁₂ /AmHMSiO ₂ @C (wt%)	14.19	5.91	17.89	2.38	1.62

Catalyst	H ₂ O ₂ /DBT mol/mol	Temp. (°C)	Time (h)	Conv. (%)	Ref.
PMo ₁₂ /AmHMSi@C	3	40	3	>99	This work
$SiO_2@C\text{-}dots/PW_{12}{}^{[a]}$	3	50	3	100	1
Ti(IV)/SiO ₂	5	60	8	>99	2
Zr(IV)/PMMA ^[b]	3.5	65	24	84	3
$[Cu(dpa)(acac)]_2[V_6O_{11}(OMe)_8]^{[c]}$	4	40	6	100	4
PW ₁₁ Zn-MOF ^[d]	50	50	6	100	5
PMo ₁₂ /BzPN-SiO ₂ ^[e]	3	60	3	100	6

Table S3. Comparison of heterogeneous catalysts for oxidation of DBT.

[a] SiO₂@C-dots loading calcined PW₁₂ in octane-acetonitrile system.

[b] Zr oxoclusters reinforced poly(methylmethacrylate) (PMMA) in octane-acetonitrile system.

[c] Alkoxohexavanadate-based Cu-complex in decalin-acetonitrile biphasic system.

[d] PW₁₁Zn@MOF in octane-[BIMIM] PF₆ system.

[e] PMo12 immobilized on phosphazene-functionalized silica in octane-H2O system.

The conversion of DBT, H_2O_2/DBT molar ratio, reaction temperature and reaction time from recent investigations were summarized in (Table S3). For example, a core-shell catalyst, SiO₂@C-dots/PW₁₂, synthesized by loading PW₁₂ and carbon dots on a solid silica core, can convert 100% of DBT in 3 h at 50 °C, but after three recycles its catalytic activity decreased to 80.4%. 99% of DBT was oxidized by titanium grafted on silica at 60 °C with H₂O₂/DBT molar ratio of 5, but a long reaction time (8 h) was needed. For Zr(IV)/poly(methlymethacrylate) (PMMA), after 24 h only a conversion of 84% was obtained at 65°C. Recently, an alkoxohexavanadate-based catalyst was synthesized in our group and at 40 °C DBT can be completely removed in 6 h. The PW₁₁Zn@MOF composite gave 100% conversion of DBT at 50 °C in 6 h, but a large amount of excess H₂O₂ was used. The PMo₁₂/BzPN-SiO₂ can convert 100% DBT in 3 h, but the oxidative desulfurization was performed at 60°C. In comparison, our PMo₁₂/AmHMSiO₂@C nanoreactor converts >99% of DBT in 3 h with H₂O₂/DBT molar ratio of 3 and the temperature (40 °C) in our catalytic reaction is lower than that in most other reports. Importantly, both catalytic activity and structure of the nanoreactor are maintained after five constant cycles.

Fig. S1. (a) SEM image of HMSiO₂@C. (b) TEM image of HMSiO₂@C. (c) The digital image of SiO₂@RF. (d) The digital image of HMSiO₂@C.

Fig. S2. (a) SEM image of AmHMSiO₂@C. (b) TEM image of AmHMSiO₂@C. (c) SEM image of PMo₁₂/AmHMSi@C. (d) TEM image of PMo₁₂/AmHMSi@C.

Fig.S3. The IR spectra of SiO₂@C and Modify-SiO₂@C

According to the ICP and element analysis results, the loading amount of PMo_{12} is about 20.1% and as a result the AmHMSiO₂@C support accounts for 79.9% in $PMo_{12}/AmHMSiO_2$ @C. According to the TG curves of AmHMSiO₂@C support, the ratio of organosilanes and amorphous carbon to the SiO₂ is 1:2.9. Therefore, the weight percentage of SiO₂ = 79.9%*(2.9/3.9) = 59.4%. The ratio of SiO₂ to amorphous carbon is 3.7:1, which is determined according to the TG curve of HMSiO₂@C. Therefore, the weight percentage of amorphous carbon = 59.4%/3.7 = 16.0%. As a result, the weight percentage of organosilanes = 79.9% - 59.4% - 16.0% = 4.5%.

Fig. S5. (a) TEM image of PMo₁₂/AmSSiO₂. (b) The IR spectra of PMo₁₂ and PMo₁₂/AmSSiO₂.

Fig. S6. (a) TEM image of $PMo_{12}/AmSMSiO_2@C$ (b) The IR spectra of $PMo_{12}/AmSMSiO_2@C$ and

 PMo_{12} .

Fig. S7. (a) TEM image of PMo₁₂/HMSiO₂@C. (b) The IR spectra of PMo₁₂/HMSiO₂@C and

PMo₁₂.

Fig. S8. XPS spectrum of PMo₁₂/AmHMSiO₂@C nanoreactor.

Fig. S9. (a) Concentration-time-course plot for DBT oxidation with different concentration of DBT. Reaction conditions: $PMo_{12}/AmHMSiO_2@C$ (0.002 mmol), 30% H_2O_2 (0.15 mmol), n-octane (2 mL) containing DBT (100, 200, or 300 ppm), acetonitrile (2 mL) at 40 °C for 15 min. (b) Concentration-time-course plot for DBT oxidation with different amount of H_2O_2 . Reaction conditions: $PMo_{12}/AmHMSiO_2@C$ (0.002 mmol), 30% H_2O_2 (0.05, 0.10, 0.15 or 0.20 mmol), n-octane (2 mL) containing DBT (800 ppm), acetonitrile (2 mL) at 40 °C for 20 min.

Notes and references

1. Y. Q. Zhang and R. Wang, Appl. Catal. B Environ., 2018, 234, 247-259.

2. J. M. Fraile, C. Gil, J. A. Mayoral, B. Muel, L. Roldan, E. Vispe, S. Calderon and F. Puente, *Appl. Catal. B Environ.*, 2016, **180**, 680-686.

3. M. Vigolo, S. Borsacchi, A. Soraru, M. Geppi, B. M. Smarsly, P. Dolcet, S. Rizzato, M. Carraro and S. Gross, *Appl. Catal. B Environ.*, 2016, **182**, 636-644.

4. J. K. Li, J. Dong, C. P. Wei, S. Yang, Y. N. Chi, Y. Q. Xu and C. W. Hu, Inorg. Chem., 2017, 56, 5748-5756.

5. D. Juliao, A. C. Gomes, M. Pillinger, R. Valenca, J. C. Ribeiro, B. de Castro, I. S. Goncalves, L. Cunha Silva and S. S. Balula, *Eur. J. Inorg. Chem.*, 2016, DOI: 10.1002/ejic.201600442, 5114-5122.

6. M. Craven, D. Xiao, C. Kunstmann-Olsen, E. F. Kozhevnikova, F. Blanc, A. Steiner and I. V. Kozhevnikov,

Appl. Catal. B Environ., 2018, 231, 82-91.