Two unusual nanosized Nd³⁺-substituted selenotungstate aggregates simultaneously comprising

lacunary Keggin and Dawson polyoxotungstate segments

Hailou Li,^{a,b} Chen Lian,^b Lijuan Chen, ^{a,*} Junwei Zhao,^{a,*} and Guo-Yu Yang^{b,*}

^aHenan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China

^bMOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China

Supporting Information

Fig. S1 Experimental and simulated PXRD patterns of 1 and 2.

Fig. S2 (a) The POA of $[(W_3Eu_2(H_2O)_8AsO_8(OH))(B-\alpha-AsW_9O_{33})_2]_2^{16-}$. (b) The POA of $\{[W_3Nd_2(H_2O)_3(NO_3)O_6](B-\alpha-SeW_9O_{33})_2(\alpha-Se_2W_{14}O_{52})\}^{17-}$. (c) The $\{Eu_2W_3\}$ cluster. (d) The $\{Nd_2W_3\}$ cluster.

Fig. S3 (a) The POA of **1**. (b) The trimer of $\{Se_6W_{35}\}$.

Fig. S4 (a) Simplified view of the stacking of **1a** POAs along the *b* axis. (b) Simplified view of the stacking of **1a** POAs along the *c* axis.

Fig. S5 (a) The POA of { $(Pd_5Se_2)(W_3)(B-\alpha-SeW_9)(\beta-Se_2W_{14})$ }₂. (b) The POA of { $[W_2Nd_2(H_2O)_8O_6(OH)_2(\beta-Se_2W_{14}O_{52})]$ [$W_3Nd_2(H_2O)_6O_7(SeW_9O_{33})_2$]₂}²⁰⁻. (c) and (d) The lacunary Keggin-type [B-α-SeW_9O_{33}]^{8-} and Dawson-type [β-Se_2W_{14}O_{52}]^{12-}segments.

Fig. S6 (a) Simplified view of the stacking of **2a** POAs along the *b* axis. (b) Simplified view of the stacking of **2a** POAs along the *c* axis.

Fig. S7 (a-b) TGA curves of 1 and 2.

Fig. S8 (a-b) IR spectra of 1 and 2.

Fig. S9 Comparison of IR spectra of the fresh **2** (fresh), the catalyst after the first cycle (1), the catalyst after the second cycle (2), the catalyst after the third cycle (3), the catalyst after the fourth cycle (4) and the catalyst after the fifth cycle (5).

Fig. S10 The possible mechanism for oxidation of thioethers catalyzed by 2.

Table S1. The results of BVS calculations of all O atoms in 1a.

Table S2. The results of BVS calculations of all O atoms in 2a.

 Table S3. Comparison of some POM-based catalysts
 for the catalytic oxidation of MPS with 2.

All chemicals were commercially purchased and used without further purification. C, H and N elements were measured on a Vario EL Cube CHNS analyzer. The contents of Na, K, W, Nd, and Se elements were measured by inductively coupled plasma atomic emission spectrometry (ICP–AES) on a Perkin–Elmer Optima 2000 ICP–AES spectrometer. IR spectra were recorded from solid sample palletized with KBr on a Perkin–Elmer FT–IR spectrometer in the range 400–4000 cm⁻¹. Powder X-ray diffraction (PXRD) patterns were collected on a Bruker D8 ADVANCE instrument with Cu K α radiation (λ = 1.54056 Å). TG analyses were performed under a N₂ atmosphere on a Mettler–Toledo TGA/SDTA 851^e instrument with a heating rate of 20 °C min⁻¹ from 30 to 1000 °C. The GC chromatograms were obtained on a SHIMADZU GC-2014C.

X-ray crystallography

The suitable crystals of **1** and **2** were picked and sealed to a glass tube closed at both ends. Intensity data for **1** and **2** were collected on a Bruker APEX II CCD detector at 296(2) K with Mo K α monochromated radiation ($\lambda = 0.71073$ Å). Direct methods were used to solve their structures and locate the heavy atoms using the SHELXTL–97 program package.¹⁻² The remaining atoms were found from successive full-matrix least-squares refinements on F^2 and Fourier syntheses. Lorentz polarization and SADABS corrections were applied. All hydrogen atoms attached to carbon and nitrogen atoms were geometrically placed and refined isotropically as a riding model using the default SHELXTL parameters. There are still solvent accessible voids in the check cif report of crystal structure, which suggest that some solvent water molecules should exist in the structure of **2** that can't be found from the weak residual electron peaks. These solvent molecules are highly disordered, and attempts to locate and refine them were unsuccessful. On the basis of elemental analysis and TG analysis, 56 lattice water molecules were directly added to the molecular formula. The crystallographic data and structure refinement parameters for **1** and **2** are listed in Table 1.

Thermogravimetric (TG) analysis

To determine the number of lattice water molecules of **1** and **2**, the TG analyses of **1** and **2** have been investigated under the flowing N₂ atmosphere with a heating rate of 10 °C min⁻¹ from 30 to 1000 °C. As shown in Fig. S7a, **1** exhibits a two-step weight loss process. From 30 to 250 °C, the first weight loss of 6.05 % (calcd. 6.12%) for **1** corresponds to the release of 35 lattice water molecules. Subsequently, an apparent weight loss ranging from 250 to 700 is 5.34 % (calcd. 5.29%) for **1**, which is attributable to the loss of 3 coordination water molecules, 1 NO₂ and 4 SeO₂. Differently, **2** presents a three-step weight loss process (Fig. S7b). From 25 to 250 °C, the first weight loss of 8.67% (calcd. 8.59%) is due to the release of 84 lattice water molecules. The second weight loss between 250 and 570 °C is 4.77% (calcd. 4.76%), which is assigned to the liberration of 20 coordination water molecules, the dehydration of 16 protons and 2 hydroxyl groups, and the removal of 7 dimethylamine groups. The third weight between 570 and 700 °C is 3.98% (calcd. 3.78%), which is ascribed to the loss of 6 SeO₂. Apparently, the experimental values coincide with the theoretical values.

FT-IR spectra

IR spectra of **1** and **2** have been recorded between 4000–400 cm⁻¹ by utilizing KBr pellets (Fig. S8). In the lowwavenumber region, IR spectra of **1** and **2** show the characteristic vibration patterns derived from the ST skeletons, four absorption bands attributable to v(W–O_t), v(Se–O), v(W–O_b) and v(W–O_c) are observed at 962, 885, 845 and 773 cm⁻¹ for **1**, and 965, 888, 862 and 781 cm⁻¹ for **2**, respectively. In the high-wavenumber region, the stretching and bending absorption vibrations of O–H groups are respectively centered at 3414 cm⁻¹ and 1628 cm⁻¹ for **1**, 3425 cm⁻¹ and 1632 cm⁻¹ for **2**. The IR spectrum of **2** has three weak bands at 3147, 2792, and 1464 cm⁻¹, which are attributed to the N–H, C–H and C–N stretching vibrations respectively, meaning the presence of dimethylamine components.

Fig. S1 Experimental and simulated PXRD patterns of 1 and 2.

Fig. S2 (a) The POA of $[(W_3Eu_2(H_2O)_8AsO_8(OH))(B-\alpha-AsW_9O_{33})_2]_2^{16-}$. (b) The POA of $\{[W_3Nd_2(H_2O)_3(NO_3)O_6](B-\alpha-SeW_9O_{33})_2(\alpha-Se_2W_{14}O_{52})\}^{17-}$. (c) The $\{Eu_2W_3\}$ cluster. (d) The $\{Nd_2W_3\}$ cluster.

Fig. S3 (a) The POA of **1.** (b) The trimer of $\{Se_6W_{35}\}$.

Fig. S4 (a) Simplified view of the stacking of **1a** POAs along the *b* axis. (b) Simplified view of the stacking of **1a** POAs along the *c* axis.

Fig. S5 (a) The POA of $\{(Pd_5Se_2)(W_3)(B-\alpha-SeW_9)(\beta-Se_2W_{14})\}_2$. (b) The POA of $\{[W_2Nd_2(H_2O)_8O_6(OH)_2 (\beta-Se_2W_{14}O_{52})][W_3Nd_2(H_2O)_6O_7(SeW_9O_{33})_2]_2\}^{20-}$. (c) and (d) The lacunary Keggin-type $[B-\alpha-SeW_9O_{33}]^{8-}$ and Dawson-type $[\beta-Se_2W_{14}O_{52}]^{12-}$ segments.

Fig. S6 (a) Simplified view of the stacking of **2a** POAs along the *b* axis. (b) Simplified view of the stacking of **2a** POAs along the *c* axis.

Fig. S7. (a-b) TGA curves of 1 and 2.

Fig. S9 Comparison of IR spectra of the fresh **2** (fresh), the catalyst after the first cycle (1), the catalyst after the second cycle (2), the catalyst after the third cycle (3), the catalyst after the fourth cycle (4) and the catalyst after the fifth cycle (5).

Fig. S10 The possible mechanism for oxidation of thioethers catalyzed by 2.

Table S1. The results of BV	calculations of	all O atoms in 1a.
-----------------------------	-----------------	--------------------

Atom	BVS	Atom	BVS	Atom	BVS
01	1.920	02	1.750	03	1.749
04	2.170	05	1.859	06	1.875
07	1.957	08	1.703	09	2.004
010	2.268	011	1.928	012	1.934
013	1.979	014	2.003	015	1.736
016	1.991	017	1.908	018	1.957
019	1.827	020	2.057	021	1.876
022	1.808	023	1.984	024	2.027
025	2.160	026	1.982	027	1.979
028	1.848	029	1.798	O30	1.802
031	2.185	032	1.726	033	1.849
034	1.872	035	1.703	O36	1.703
037	2.061	038	1.952	O39	2.008
O40	2.044	041	2.079	042	2.009
043	1.990	044	1.867	O45	1.995
O46	2.114	047	1.819	O48	2.045
049	2.036	050	2.079	051	2.050
052	2.063	053	1.875	054	2.152
055	2.044	056	1.915	057	1.809
058	1.963	059	1.797	O60	2.053
061	2.003	062	1.882	063	1.700
O64	1.947	065	2.008	O66	1.735
067	1.932	068	2.114	O69	1.859
070	2.196	071	1.609	072	2.089
073	2.032	074	1.993	075	1.708
076	1.842	077	2.081	078	1.910
079	1.889	O80	1.828	081	1.960
082	1.798	083	2.166	084	1.904
085	1.909	086	1.885	087	1.783
088	1.830	089	1.860	O90	1.857
091	2.112	092	1.867	O93	1.806
094	1.807	095	1.750	O96	1.825
097	2.066	098	1.988	O99	1.936
0100	1.591	0101	1.703	0102	1.613
O103	2.012	0104	1.466	0105	1.703
0106	1.749	0107	1.919	O108	1.904
0109	1.847	0110	1.890	0111	1.745
0112	1.613	0113	1.750	0114	1.703

0115	1.749	0116	1.847	0117	1.786
0118	1.926	0119	1.898	0120	1.657
0121	1.955	0122	1.957	0123	1.855
0124	1.613	0125	1.964	0126	1.865
0127	1.587	O1W	0.262	O2W	0.284
03W	0.270				

 Table S2. The results of BVS calculations of all O atoms in 2a.

Atom	BVS	Atom	BVS	Atom	BVS
01	1.897	02	1.963	03	1.959
04	2.050	05	1.852	06	1.935
07	1.898	08	1.984	09	2.011
010	1.987	011	1.976	012	2.181
013	1.942	014	2.066	015	1.933
016	2.094	017	1.613	018	2.181
019	2.120	020	1.882	021	2.420
022	2.097	023	2.094	024	1.749
025	2.054	026	2.094	027	1.875
028	1.657	029	2.291	030	2.105
031	1.797	032	2.068	033	1.962
034	2.071	035	2.064	036	1.703
037	1.858	038	2.171	039	1.924
O40	1.798	041	1.907	042	1.910
043	1.825	044	2.049	045	1.997
O46	1.847	047	2.020	048	1.749
049	1.963	050	1.987	051	2.066
052	1.658	053	1.857	054	2.132
055	1.815	056	1.965	057	2.131
058	1.776	059	1.897	060	1.832
061	2.007	062	1.824	063	2.097
064	2.094	065	2.083	066	1.955
067	2.330	O68	1.749	O69	1.944
070	1.703	071	2.155	072	1.965
073	2.254	074	1.749	075	1.858
076	1.959	077	1.854	078	2.010
079	1.897	080	2.025	081	1.657
082	2.204	083	1.874	084	2.293
085	2.000	086	1.995	087	1.934
088	1.749	089	1.449	090	1.963
091	1.749	092	1.570	093	1.978
094	0.995	095	2.015	096	2.097
097	1.749	098	1.962	099	1.788
0100	2.332	0101	1.968	0102	1.847
0103	2.057	0104	1.932	0105	2.165
0106	1.987	0107	1.932	0108	1.897
0109	1.915	0110	1.959	0111	2.196
0112	1.750	0113	2.064	0114	2.066
0115	1.613	0116	1.965	0117	2.131
0118	1.883	0119	1.703	0120	1.905
0121	1.602	0122	2.181	0123	1.847
0124	1.932	0125	1.867	0126	1.898
0127	1.852	0128	1954	0129	1.897

0130	2.108	0131	2.477	0132	2.124
0133	1.703	0134	2.043	0135	2.211
0136	1.984	0137	1.750	0138	1.984
0139	2.052	0140	1.965	0141	1.948
0142	1.986	0143	1.487	0144	2.214
0145	1.937	0146	2.002	0147	1.822
0148	1.978	0149	2.088	0150	2.057
0151	1.934	0152	2.114	0153	1.897
0154	2.103	0155	2.150	0156	1.798
0157	1.750	0158	2.122	0159	2.205
0160	2.011	0161	2.011	0162	1.897
0163	2.078	0164	1.657	0165	2.066
0166	2.021	0167	1.657	O168	1.719
0169	1.954	0170	2.012	0171	2.028
0172	1.098	0173	1.966	0174	1.954
0175	1.981	0176	2.119	0177	2.195
0178	1.984	0179	1.905	O180	2.095
0181	2.058	0182	2.292	0183	2.002
0184	1.914	0185	1.864	O186	1.833
0187	1.749	0188	2.068	0189	1.990
0190	1.949	0191	2.062	0192	1.860
0193	1830	0194	1.898	0195	2.034
0196	1.949	0197	2.163	O198	2.068
0199	1.798	O200	1.843	O201	1.934
0202	1.570	0203	2.075	O204	2.330
0205	1.847	O206	2.052	O1W	0.335
02W	0.308	O3W	0.326	O4W	0.353
05W	0.394	O6W	0.373	07W	0.292
08W	0.300	09W	0.415	010W	0.344
011W	0.394	012W	0.309	014W	0.404
015W	0.269	016W	0.394	017W	0.335
018W	0.262	019W	0.326	O20W	0.332
O48W	0.262				

Table S3. Comparison of some POM-based catalysts for the catalytic oxidation of MPS with 2.

Compounds	Time (min)	Temp(°C)	Conve (%)	Sel (%)	Ref.
$[Ce_2(H_2O)_6(DMEA)W_4O_9(\alpha-SeW_9O_{33})_3]^{12}$	60	40	100	100	3
[Ce ₂ W ₄ O ₉ (H ₂ O) ₇ (SeW ₉ O ₃₃) ₃] ₂ ²⁴⁻	60	40	100	100	3
$\label{eq:constraint} \begin{array}{l} [Zr_{24}O_{22}(OH)_{10}(H_2O)_2(W_2O_{10}H)_2(GeW_9O_{34})_4 \\ (GeW_8O_{31})_2]^{32} \end{array}$	60	60	99	84	4
[Ln ₃ (H ₂ O) ₁₄ {(Mo ₈ O ₂₄)(O ₃ PCH ₂ COO) ₃ } ₂] ^{9.}	60	50	100	99.7	5
[As ₄ W ₄₀ O ₁₄₀ {Ru ₂ (CH ₃ COO)} ₂] ¹⁴⁻	60	50	100	100	6
{Ti ₇ O ₆ (SbW ₉ O ₃₃) ₄ }2 ⁴⁰⁻	60	50	100	100	7
[{Re(CO) ₃ } ₄ (Mo ₄ O ₁₆)] ⁴⁻	60	35	99	100	8
[Na ₅ Sb ₃ (Sb ₂ Mo ₁₂ O ₅₇)] ¹²⁻	60	25	100	100	9

$ \{ [W_2Nd_2(H_2O)_8O_6(OH)_2(\beta-Se_2W_{14}O_{52})] \\ [W_3Nd_2(H_2O)_6O_7(B-\alpha-SeW_9O_{33})_2]_2 \}^{20-} $	10	35	100	100	This paper
--	----	----	-----	-----	------------

- 1 G. M. Sheldrick, SHELXL 97, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1997.
- 2 G. M. Sheldrick, SHELXS 97, Program for Crystal Structure Solution; University of Göttingen: Göttingen, Germany, 1997.
- 3 H.-L. Li, C. Lian, L.-J. Chen, J.-W. Zhao and G.-Y. Yang, Inorg. Chem., 2019, 58, 8442–8450.
- 4 L. Huang, S.-S. Wang, J.-W. Zhao, L. Cheng and G.-Y. Yang, J. Am. Chem. Soc., 2014, 136, 7637–7642.
- 5 J. W. Wang, Y. J. Niu, M. Zhang, P. T. Ma, C. Zhang, J. Y. Niu and J. P. Wang, *Inorg. Chem.*, 2018, 57, 1796–1805.
- 6 M. D. Han, Y. J. Niu, R. Wan, Q. F. Xu, J. K. Lu, P. T. Ma, C. Zhang, J. Y. Niu and J. P. Wang, *Chem. Eur. J.*, 2018, 24, 11059–11066.
- 7 H.-L. Li, C. Lian, D.-P. Yin, Z.-Y. Jia and G.-Y. Yang, *Cryst. Growth Des.*, 2019, **19**, 376–380.
- 8 J. K. Lu, X. Y. Ma, V. Singh, Y. J. Zhang, P. T. Ma, C. Zhang, J. Y. Niu and J. P. Wang, Dalton Trans., 2018, 47, 5279–5285.
- 9 J. K. Lu, Y. P. Wang, X. Y. Ma, Y. J. Niu, V. Singh, P. T. Ma, C. Zhang, J. Y. Niu and J. P. Wang, *Dalton Trans.*, 2018, 47, 8070–8077.