Supporting Information

Modular Design of Bi-specific Nanoplatform Engaged in Malignant Lymphoma Immunotherapy

Chen Bai[†], Pengcheng Hu[†], Wei Zhang, Lina Song, Di Liu, Yi Chen, Ming Ma^{*}, Ning Gu^{*}, and Yu Zhang^{*}

Table S1. The coupling rate and coupling quantity of SA and the hydrodynamic sizes and zeta potential of $SA@Fe_3O_4$ with the different reactant mass.

The	The	Hydrodynamic	Zeta	The	The number	The
quantity	quantity	size	potential	quantity	of coupled	coupling
of iron	of SA	(nm)	(mV)	of	SA for each	rate of
(µg)	(µg)			coupled	nanoparticle	SA (%)
				SA (µg)		
200	0	12.93±1.39	-15.6±0.87			
200	50	13.35±0.59	-15±2.72	10.8	0.12	21.6
200	100	15.01 ± 0.04	-8.53±0.13	57.71	0.6	57.71
200	200	15.62 ± 1.46	-5.31±0.44	162.66	1.75	81.33
200	300	14.62 ± 0.63	-6.13±0.59	232.69	2.5	77.56
200	400	14.73±0.33	-6.56±1.84	232.17	2.5	58.04

The number of SA coupled on the surface of $PEG@Fe_3O_4$ nanoparticles was measured and calculated as follows:

$$M_{Fe_{3}O_{4}} = \frac{4}{3} \pi r^{3} \rho_{Fe_{3}O_{4}}$$
$$N_{Fe_{3}O_{4}} = \frac{m_{Fe_{3}O_{4}}}{M_{Fe_{3}O_{4}}}$$
$$N_{SA} = \frac{m_{SA}}{M_{SA}}$$
$$R_{SA/Fe_{3}O_{4}} = \frac{N_{SA}}{N_{Fe_{3}O_{4}}}$$

Where ${}^{M_{Fe_3}o_4}$ represents the relative molecular mass of one Fe₃O₄ nanoparticle. r is the radius size of nanoparticles. ${}^{\rho_{Fe_3}o_4}$ is the density of the Fe₃O₄. ${}^{m_{Fe_3}o_4}$ and ${}^{m_{SA}}$ are the quantity of iron oxide and SA respectively. ${}^{M_{SA}}$ is the relative molecular mass of SA which is 66 KDa. ${}^{N_{SA}}$ and

 $N_{Fe_3O_4}$ are the number of SA and Fe₃O₄ nanoparticle. R_{SA/Fe_3O_4} is the number of SA for each Fe₃O₄ nanoparticle.

Table S2. The number of antibody coupled on the Fe ₃ O ₄ nanoparticles.							
	Fe ₃ O ₄ nanoparticle	CD20	CD3	Coupled	The number of		
	(µg)	anitbody	antibody	antibody	antibody for each		
	(in terms of Fe)	(µg)	(µg)	(µg)	nanoparticle		
CD20@Fe ₃ O ₄	500	1500	0	1250	~2.64		
CD20&CD3@Fe ₃ O ₄	500	750	750	1200	~2.55		

The number of antibody coupled on the surface of SA@Fe₃O₄ nanoparticles was measured and calculated as follows:

$$M_{Fe_{3}O_{4}} = \frac{4}{3}\pi^{r^{3}}\rho_{Fe_{3}O_{4}}$$
$$N_{Fe_{3}O_{4}} = \frac{m_{Fe_{3}O_{4}}}{M_{Fe_{3}O_{4}}}$$
$$N_{antibody} = \frac{m_{antibody}}{M_{antibody}}$$
$$R_{antibody/Fe_{3}O_{4}} = \frac{N_{antibody}}{N_{Fe_{3}O_{4}}}$$

 $M_{Fe_3O_4}$ represents the relative molecular mass of one Fe₃O₄ nanoparticle. r is the radius Where size of nanoparticles. ${}^{\rho_{Fe_3}o_4}$ is the density of the Fe₃O₄. ${}^{m_{Fe_3}o_4}$ and ${}^{m_{SA}}$ are the quantity of iron oxide and SA respectively. ^Mantibody is the average molecular mass of CD20 and CD3 antibody which is 140 KDa. $N_{antibody}$ and $N_{Fe_3O_4}$ are the number of antibody and Fe₃O₄ nanoparticle. $R_{antibody/Fe_3O_4}$ is the number of antibody for each Fe₃O₄ nanoparticle.

Table S3. The relaxation properties of different test samples.

Туре	$r_1(mM^{-1}s^{-1})$	r_2 / r_1
PEG@Fe ₃ O ₄	8.15	3.58
$SA@Fe_3O_4$	7.06	4.21
$CD20\&CD3@Fe_3O_4$	5.27	4.36
Magnevist	4.52	_

Table S4. The median survival time of mice with different treatment groups.

Figure S1. (a)TEM image and (b) electron diffraction pattern of OAm@Fe₃O₄, (c) a size distribution histogram of OAm@Fe₃O₄ in TEM imaging. (D_{TEM} = 5.5 ± 0.6 nm).

Figure S2. The hydrodynamic size of Fe₃O₄ nanoparticles with different surface modification.

Figure S5. Plot of $1/T_1$ against Gd concentration of Magnevist in water under 3.0 T MR scanner (The slope of the corresponding linear fit was the relaxivity). The inner image is T_1 -weighted MR images of Magnevist with different Gd concentrations in water.

Figure S6. The laser confocal image of living Raji cells co-cultured with BSNP(The scale bar is $50 \ \mu m$).

Figure S7. Cell viabilities of K562 cells incubated with different concentration of $SA@Fe_3O_4$ and $CD20@Fe_3O_4$ for (a) 24 hours, (b) 48 hours, and (c) 72 hours.

The Concentration of CD20 antibody (µg/mL)

Figure S8. Cell viabilities of Raji cells incubated with different antibody concentration of CD20&CD3@Fe₃O₄ and CD20 antibody for 24 hours.

Figure S9. The histochemical staining and Prussian blue staining images of tumor and organs. (The scale bar is $100 \ \mu m$)

Figure S10. The Prussian blue staining images of organs with different treatment groups. (The scale bar is $100 \mu m$, NPs represents BSNP, Control is the slides of healthy mice)

Figure S11. The histochemical staining images of organs with different treatment groups. (The scale bar is $100 \ \mu m$, NPs represents BSNP, Control is the slides of healthy mice).