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A simple yet efficient structural similarity descriptor

As explained in the main text, we need to remove duplicate structures that may appear in

the structural data pool generated by the different potentials. We achieve this goal by using

a structural similarity descriptor based on the “atomic equivalence indices”, first introduced

in [J. Chem. Phys. 107, 6321 (1997)] by Bonacic-Koutecky and coworkers. For brevity of

exposition, let us consider first a homonuclear cluster for which we need to characterize the

atomic skeleton only, i.e. we dispense with the chemical order problem for the time being.

For a cluster with N atoms, the atomic equivalence index of atom i is just the sum of its

distances to all other atoms in the cluster:

σi =
N∑
j=1

d(i, j), (1)

where d(i, j) is the distance between atoms i and j. The set of ordered σi values forms and

N−dimensional vector σ = (σ1, . . . , σN) that characterizes each local minimum (isomer) on

the potential energy surface (in our case we have ordered the σi values in ascending order,

i.e. from the least to the most coordinated atom). With the vector components ordered this

way, and each component being exclusively based on interatomic distances, two identical

isomers will have identical σ indicators irrespective of their global orientation in space or of

possible permutations of atoms. The indicator will additionally remove enantiomers in case

of chiral point group symmetries.

This indicator would be enough for a homonuclear cluster if one works with a single

empirical potential, i.e. with a unique potential energy surface. However, we have employed

a variety of potentials in order to enhance structural diversity, and collected the different

outputs of each potential into a single structural data pool. A potential problem is that

different potentials may have slightly different values for the average interatomic distance,

so the same structural motif (for example, an icosahedron) may appear several times in the

data pool but with different interatomic distances. Now, σ as defined above depends on the
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quantitative values of distances, and will not be able to remove duplicates with a different

“volume”. Therefore, we redefine the indicator by normalizing the σ vector:

σi ⇒
σi√∑
i σ

2
i

This new indicator will recognize two structures that merely differ by a scale transformation

as identical.

In a nanoalloy, it is important to distinguish different chemical order patterns as well. To

this end, we have employed additional σAA
i , σBB

i and σAB
i indicators, defined in full analogy

with equation (1), but where only AA, BB or AB distances, respectively, are considered. All

the vector indicators are ordered and normalized as explained above. The degree of similarity

between two isomers p and q is then quantified by the metric distance in the vector spaces

defined by the different indicators:

Σpq =
1

4

(
|σp − σq|+ |σAA

p − σAA
q |+ |σBB

p − σBB
q |+ |σAB

p − σAB
q |

)

The first term will determine the degree of similarity between two given skeletal structures,

while the remaining three terms will check the homotop similarity. Given a structural data

bank containing an arbitrary number of structures, the user can choose the cutoff value of

Σpq used to decide if one of those two structures has to be removed from the database. We

have empirically determined that values of Σ around 0.01-0.03 are appropriate for removing

duplicates. But we notice that the same indicator can be used to select from a database

containing, say, 1000 structures, those 50 structures which differ most from each other, i.e.

it is useful to select a number of individuals with maximum diversity. One simply has to

increase the value of the cutoff until only 50 structures remain in the pruned list.
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Optimal potential parameters

Table S1: Optimal parameters for the bare Gupta potential

AAA ξAA pAA qAA ABB ξBB pBB qBB AAB ξAB pAB qAB

0.078 0.40 4.51 2.21 0.090 0.56 7.75 3.47 0.084 0.50 6.26 2.90

Table S2: Optimal parameters for the Coulomb-corrected-Gupta potential. In this table we
quote the parameters for the metallic part of the potential

AAA ξAA pAA qAA ABB ξBB pBB qBB AAB ξAB pAB qAB

0.07 0.38 4.69 2.30 0.085 0.55 7.29 3.12 0.085 0.47 5.87 2.65

Table S3: Optimal parameters for the Coulomb-corrected-Gupta potential. In this table we
quote the parameters for the ionic part of the potential

χA χB ηA ηB CA CB DA DB

3.88 3.24 2.24 1.79 0.98 1.30 1.37 0.77

Table S4: Optimal parameters for the Coulomb-corrected-Gupta potential. In this table we
quote the cutoff parameters used to determine the coordination numbers (eq. 2 in the main
paper), in Å units.

d1(AB) d2(AB) d1AA d2(AA) d1(BB) d2(BB)
2.70 3.30 2.55 3.15 2.95 3.55

4



Size transferability test for the EP

The training and testing sets employed in the main paper include exclusively clusters with

between 10 and 50 atoms. Thus a pertinent question to ask is about the transferability

of the potential to system sizes bigger than those employed in the fitting procedure. To

check this issue, we have chosen a convenient test system, namely a 79-atom truncated

octahedron, and performed a global search for homotops of the Zn40Mg39 nanoalloys, which

is essentially equiatomic. We have sorted all the homotops located in these extensive searches

according to the number of Zn-Mg heterobonds, i.e. from maximally mixed to maximally

segregated, and then have chosen ten different homotops with varying degrees of mixing,

on which we have performed DFT SIESTA calculations. The figure below benchmarks the

performances of bare and Coulomb-corrected Gupta models against the ab initio data. This

figure displays the differences in binding energy per atom, with respect to the most stable

homotop. The degree of mixing decreases from homotop 1 to homotop 10. SIESTA results

show, except for some oscillations of secondary importance, that stability increases with the

degree of mixing, homotop 1 being the most stable one. The bare Gupta potential does

not correctly capture the energy difference between mixed and segregated homotops, and

moreover predicts homotop 4, with an intermediate degree of mixing, to be most stable.

Meanwhile, the Coulomb-corrected Gupta EP recognizes homotop 1 as the most stable one,

and further provides a much more accurate match for all the energy differences between

homotops, even for a cluster size which is significantly bigger than those used when training

the potential.

One of the main results of our work is that the apparently small (6%) charge transfer

contribution to the nanoalloy binding energies is utterly important to reproduce the correct

chemical order trends. The results of this test, performed on 79-atom clusters, suggests

that such conclusion holds quite generally for all clusters within the small non-scalable size

regime. Thus, we expect our potential to be useful for clusters with up to a few hundred

atoms at least. There should not be high expectations, however, about the performance of
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our potential in reproducing structural properties or cohesive energies at the bulk limit, as no

bulk data were feeded into the fitting process. In summary, our new potential model displays

a very good transferability with respect to nanoalloy composition, and does so over a sizable

size regime, including all sizes within the most interesting non scalable regime. Whether our

analytical model can be made fully transferable (to all compositions and to all sizes from

small molecules to the bulk), while retaining its high accuracy regarding homotopic stability,

still remains an open question.
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Figure S1: Relative stabilities of ten different homotops for a 79-atom nearly-equiatomic
Zn40Mg39 nanoalloy, with a truncated octahedral atomic skeleton. The figure shows excess
binding energies per atom (or cohesive energies) with respect to the most stable homotop,
for each level of theory. The bare Gupta potential fails in identifying the most stable DFT
homotop. The relative stabilities in homotopic space are much better reproduced by the
Coulomb-corrected potential.
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Comparison with bulk alloy structures

Figure S2: On the left we show a fragment of the Pmma crystalline lattice of the equiatomic
Zn-Mg alloy; the middle graph shows a 24-atom fragment directly cut from the Pmma lattice.
Relaxation of this initial structure produces the GM structure of Zn12Mg12; the right figure
shows a relaxed 26-atom fragment of the R3̄c crystalline lattice adopted by Mg21Zn25 alloy.
Its structure is identical to the GM structure of Zn13Mg13, although the composition is
obviously different.
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Electronic properties

Table S5: Vertical ionization potential, vertical electron affinity and fundamental gap of
equiatomic Zn-Mg nanoalloys with up to 50 atoms

N vIP vEA GAP
4 6.70 0.64 6.06
6 6.20 0.97 5.23
8 6.04 1.19 4.86
10 5.69 1.09 4.60
12 5.79 1.59 4.20
14 5.62 1.93 3.69
16 5.51 1.45 4.06
18 5.43 2.09 3.34
20 5.28 1.62 3.66
22 5.28 1.92 3.37
24 5.03 1.95 3.08
26 4.95 2.06 2.89
28 4.97 2.05 2.92
30 5.00 2.20 2.80
32 5.12 2.07 3.04
34 5.08 2.22 2.86
36 4.83 2.02 2.81
38 5.06 2.27 2.79
40 5.06 2.33 2.73
42 5.07 2.41 2.66
44 5.11 2.20 2.91
46 5.16 2.11 3.05
48 4.90 2.25 2.64
50 4.82 2.32 2.50
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Cohesive Energy
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Figure S3: Cohesive energy of equiatomic Zn-Mg nanoalloys as a function of the total number
of atoms (lower scale) or of electrons (upper scale).
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