Supporting Information

Cation-exchange construction of ZnSe/Sb₂Se₃ hollow microspheres

coated by nitrogen-doped carbon with enhanced sodium ion storage

capability

Yuyu Wang,^{a+} Dongxu Cao,^{b+} Kailiang Zhang,^c Wenpei Kang,^{b*} Xiaotong Wang,^a Ping Ma,^a Yufen Wan,^a Dongwei Cao^a and Daofeng Sun^{ab*}

^a College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China.

^b School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China.

^c Shandong Institute for Product Quality Inspection, № 81, Shanda North Road, Jinan, Shandong 250100, People's Republic of China.

*Email: wpkang@upc.edu.cn; dfsun@upc.edu.cn

The supporting information contains Fig. S1-S7 and Table S1-S3.

⁺ These authors contributed equally to this work.

Fig. S1 SEM images of (a) ZnSe precursor, (b) ZnSe@NC, (c) ZnSe/Sb₂Se₃@NC (10:1), (d) ZnSe/Sb₂Se₃@NC (50:1), (e) ZnSe/Sb₂Se₃@NC (100:1) and (f) ZnSe/Sb₂Se₃@NC (200:1).

Fig. S2 TEM images of (a) ZnSe@NC and (b) $Sb_2Se_3@NC$ samples.

Fig. S3 XRD curves for the sample obtained from different weight ratios of $ZnSe@PDA:SbCl_3$ during the ion exchange process.

Fig. S4 TGA curve of the $ZnSe/Sb_2Se_3@NC$ in the air atmosphere.

Fig. S5. Comparison of the XPS spectra for ZnSe@NC, Sb₂Se₃@NC and ZnSe/Sb₂Se₃@NC.

Fig. S6 CV curves for (a) ZnSe@NC and (b) $Sb_2Se_3@NC$ electrodes at the scan rates of 0.1 mV S⁻¹.

Fig. S7 The selected discharge/charge profiles and the corresponding dQ/dV curves at 0.5 A g⁻¹ (0.05 A g⁻¹ for the initial cycle) of ZnSe/Sb₂Se₃@NC.

Analyte	Conc.Units
Zn	17.69 mg/L
Sb	13.36 mg/L

Table S1 ICP result of the ZnSe/Sb2Se3@NC hollow microsphere.

		ZnSe@NC	ZnSe/Sb ₂ Se ₃ @NC	Sb ₂ Se ₃ @NC
N	at%	9.76	8.90	8.42
	wt%	8.71	5.57	5.61

Table S2 The at% and wt% of the N element in the samples.

Materials	Initial discharge capacity	Initial charge capacity	Initial Coulombic efficiency	References
ZnSe/Sb ₂ Se ₃ @NC hollow microsphere	570.5 mAh g ⁻¹	516.5 mAh g ⁻¹	90.5%	Our work
CoSe ₂ /(NiCo)Se ₂ box-in-box hollow nanocubes	661 mAh g ⁻¹	574 mAh g ⁻¹	79.6%	[1]
MoSe ₂ /C nanotubes encapsulated with CoSe ₂ nanoparticles	590 mAh g ⁻¹	450 mAh g ⁻¹	76.3%	[2]
SnSe/C wrapped Within N-doped graphene	652.6 mAh g⁻¹	486.1 mAh g⁻¹	74.49%	[3]
rGO-overcoated Sb_2Se_3 nanorods	940 mAh g ⁻¹	682 mAh g ⁻¹	72.6%	[4]
CoSe ₂ nanobuds encapsulated into boron and nitrogen codoped graphene (BCN) nanotubes	926 mAh g ⁻¹		68.5%	[5]
FeSe ₂ @C hollow nanocubes	858 mAh g ⁻¹	539 mAh g ⁻¹	62.8%	[6]
ZnSe-NC@CoSe ₂ - NC polyhedrons	882.6 mAh g ⁻¹	502.5 mAh g ⁻¹	56.9%	[7]
N-ZnSe@rGO polyhedra	1022 mAh g ⁻¹	562 mAh g ⁻¹	54.9%	[8]

Table S3 Initial capacity loss comparisons with other selenide anodes and $ZnSe/Sb_2Se_3@NC$ hollow microsphere as anode materials for SIBs.

Notes and references

- 1 S. K. Park, J. K. Kim and Y. C. Kang, Metal-organic framework-derived CoSe₂/(NiCo)Se₂ box-in-box hollow nanocubes with enhanced electrochemical properties for sodium-ion storage and hydrogen evolution, *J. Mater. Chem. A*, 2017, **5**, 18823-18830.
- 2 J. Gao, Y. Li, L. Shi, J. Li and G. Zhang, Rational design of hierarchical nanotubes through encapsulating CoSe₂ nanoparticles into MoSe₂/C composite shells with enhanced lithium and sodium storage performance, *ACS Appl. Mater. Interfaces*, 2018, **10**, 20635-20642.
- 3 C. Lu, Z. Li, Z. Xia, H. Ci, J. Cai, Y. Song, L. Yu, W. Yin, S. Dou, J. Sun and Z. Liu, Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage, *Nano Res.*, 2019, **12**, 3051-3058.
- 4 X. Ou, C. Yang, X. Xiong, F. Zheng, Q. Pan, C. Jin, M. Liu and K. Huang, A new rGO-overcoated Sb₂Se₃ nanorods anode for Na⁺ battery: in situ X-Ray diffraction study on a live sodiation/desodiation process, *Adv. Funct. Mater.*, 2017, **27**, 1606242.
- 5 H. Tabassum, C. Zhi, T. Hussain, T. Qiu, W. Aftab and R. Zou, Encapsulating trogtalite CoSe₂ nanobuds into BCN nanotubes as high storage capacity sodium ion battery anodes, *Adv. Energy Mater.*, 2019, **9**, 1901778.
- 6 H. Fan, H. Yu, Y. Zhang, J. Guo, Z. Wang, H. Wang, N. Zhao, Y. Zheng, C. Du, Z. Dai, Q. Yan and J Xu, 1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe₂@C core-shell nanorods for advanced sodium ion batteries, *Energy Storage Mater.*, 2018, **10**, 48-55.
- 7 X. Hu, X. Liu, K. Chen, G. Wang and H. Wang, Core-shell MOF-derived N-doped yolk-shell carbon nanocages homogenously filled with ZnSe and CoSe₂ nanodots as excellent anode materials for lithium- and sodium-ion batteries, *J. Mater. Chem. A*, 2019, **7**, 11016-11037.
- 8 X. Liu, Y. Liu, M. Feng and L.-Z. Fan, MOF-derived and nitrogen-doped ZnSe polyhedra encapsulated by reduced graphene oxide as the anode for lithium and sodium storage, *J. Mater. Chem. A*, 2018, **6**, 23621-23627.