Supplement Information

A Sinter-resistant Catalytic System Based on Ultra-small Ni-Cu Nanoparticle

Encapsulated in Ca-SiO₂ for High-performance Ethanol Steam Reforming

Rong Dai^{a, ‡}, Ziliang Zheng^{b, ‡}, Chenshuai Lian^a, Kai Shi^a, Xu Wu^a, Xia An^a, Xianmei Xie^{a, *}

^aCollege of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China

^bTranslational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China

^{*} Corresponding author. E-mail addresses: xxmsxty@sina.com (X.M. Xie).

[‡]These authors contributed equally to this work.

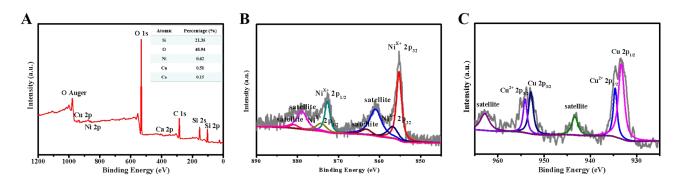


Figure S1 A) XPS survey spectrum B) Ni 2p XPS spectrum, C) Cu 2p XPS spectrum of reactive Ni-Cu@CS.

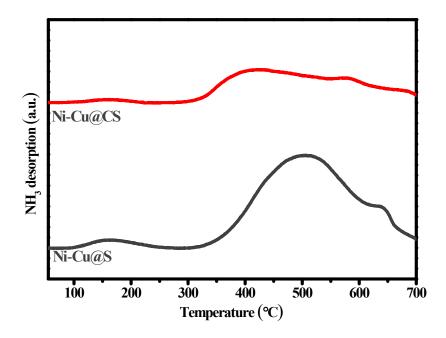


Figure S2 NH₃-TPD profiles of Ni-Cu@CS and Ni-Cu@S samples.

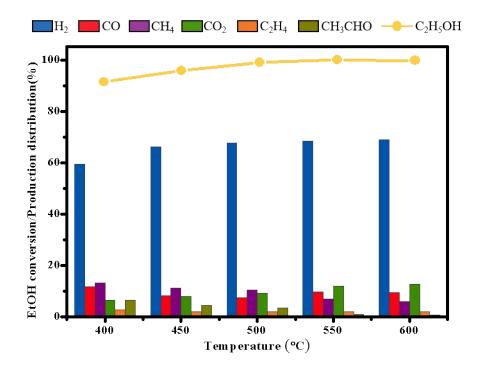


Figure S3 Variation of ethanol conversion and product selectivity as a function of reaction temperature over Ni-Cu@S.