Supporting Information:

Vanadium Based Carbide-Oxide Heterogeneous V₂O₅@V₂C Nanotube Array for High-Rate and Long-Life Lithium-Sulfur Batteries

Zhenguo Wang^a, Ke Yu^{*, a,b}, Shijing Gong^a, Erwei Du^a and Ziqiang Zhu^a

^a Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics,

East China Normal University, Shanghai 200241, China

^b Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan,

Shanxi 030006, China

Corresponding Author

* Tel.: +86 21 54345198; Fax: +86 21 54345119. E-mail address: yk5188@263.net

Figure S1 The V₂O₅@V₂C/S cathode.

The amount of pole piece prepared for 8.4 mg·cm⁻²: 1.68 g sublimed sulfur, 0.42 g $V_2O_5@V_2C$, and the coating thickness is about 70 microns; the amount of pole piece prepared for 4.2 mg·cm⁻²: 0.84 g sublimed sulfur, 0.21 g $V_2O_5@V_2C$, the coating thickness is about 45 microns; the amount of pole piece prepared for 2.0 mg·cm⁻²: 0.40g sulfur, 0.10 g $V_2O_5@V_2C$, the coating thickness is about 25 microns; during the battery preparation and assembly process, the size of the aluminum foil is 200 mm×100 mm, use a microtome to cut the positive pole piece with a diameter of 15 mm, the electrolyte dosage is 80-120 microliters, the diameter of the cut diaphragm disc is 16 mm, the thickness of the metal lithium sheet used is 0.6 mm, and the diameter is also 15 mm.

Figure S2 Digital photo of removable three-electrode battery.

Figure S3 SEM graph of V₂C-MXene after hydro-thermal treatment.

Figure S4 The selected electron diffraction FFT diagram.

Figure S5 Surface energy and interface free energy calculation for V₂O₅@V₂C.

Figure S6 The XRD spectrum of V_2C , $V_2O_5@V_2C$ after different cycles and de- $V_2O_5@V_2C$.

Figure S7 The Ranman spectrum of $V_2O_5@V_2C$ after & before cycling and pure V_2C .

Figure S8 XPS full spectrum of V₂O₅@V₂C.

Figure S9 The XPS spectrum of C1s.

Figure S10 The actual working diagram of as-assembled lithium sulfur battery.

Figure S11 The C-V curve of $V_2O_5@V_2C$ of the initial 3 cycles.

Figure S12 The charge and discharge curve of V₂O₅@V₂C.

Figure S13 The SEM graph of (a) de- $V_2O_5@V_2C$ (b) $V_2O_5@V_2C$ after 100 cycles (c) $V_2O_5@V_2C$ after 500 cycles (d) $V_2O_5@V_2C$ after 1000 cycles.

Figure S14 The EIS spectrum of V₂C, V₂O₅ and V₂O₅@V₂C with high S loading.

Figure S15 The V₂O₅/S on Al foil.

Figure S16 Adsorption performance test diagram of V₂C and V₂O₅@V₂C.

Figure S17 The crystal model of V_2AIC and V_2C .

Figure S18 The crystal model of V₂O₅ and V₂O₅@V₂C.

Figure S19 Regional charge density differential diagram of $V_2O_5@V_2C$.

Element	Pure V ₂ C (at. %)	185°C hydrothermally treated V ₂ C (at. %)	de-V ₂ O ₅ @V ₂ C before cycling (at. %)	de-V ₂ O ₅ @V ₂ C after cycling (at. %)
V	62.74	53.07	57.83	56.42
С	35.11	22.89	25.36	25.03
0	2.15	24.04	16.81	18.55

Table S1. EDX distribution of V, O and C elements of pure V_2C , hydrothermally treated V_2C , $V_2O_5@V_2C$ before and after cycling.

Table S2 The surface energy of $\mathrm{V_2O_5}$ with different crystal planes and the free

Lattice plane	XRD diffraction peak (°)	A (Ų)	E _{slab} (10 ⁴ eV)	E _{bulk} (10 ⁴ eV)	E _{surf} (J/m²)	V ₂ O ₅ @V ₂ C E _{free} (eV)	Interplanar crystal spacing (Å)
V ₂ O ₅ -(200)	15.35	15.54	-2.45674		0.2835	0.2761	5.768
V ₂ O ₅ -(001)	20.26	31.66	-2.45675	1 22940	0.1419	0.2750	4.379
V ₂ O ₅ -(110)	26.13	26.30	-2.45528	-1.22840	0.2315	0.3816	3.408
V ₂ O ₅ -(301)	31.0	60.79	-2.45462		0.2876	1.0913	2.882
V ₂ C-(002)	8.50	68.20	-0.83330	-0.42217	1.2960	-	-

energy of the interface of V2O5@V2C.

Host	S loading (mg cm ⁻²)	Current density (C)	Cycles	Initial capacity (mAh g ⁻¹)	Areal capacity (mAh cm ⁻²)	Capacity decay (% per cycle)	Year	Ref
V ₂ O ₅ @V ₂ C	2.0	0.2	100	1173	2.35	0.043	- - W	
		0.5	1000	1138	2.28	0.047		Th:
		2	500	1106	2.21	0.053		l his work
	4.2	0.2	200	1093	4.50	0.078		
	8.4	0.2	200	1058	8.59	0.11		
VO ₂ (p)@V ₂ C	2.0	2	500	1210	2.42	0.062	2019	1
V ₂ O ₅ - rGO	1.2-1.5	0.2	300	~1000	1.2-1.5	0.048	2018	2
rGO-VS ₂	2.6	0.1	100	721	1.87	0.094	2018	3
VS ₂ -C	1-2	2	100	1185	1.18-2.37	0.16	2018	4
V ₂ O ₅ -C	5.5	2	500	790	1.6	0.041	2017	5
VO _x -SWCNT	1.0	1	300	1069	1.7	0.095	2018	6
VN-C	2.8	1	200	1200	2.8	0.24	2017	7
VN nanobubbles	6.8	0.5	200	800	5.4	0.15	2016	8
VO ₂ –VN	4.2	2	800	1105	2.21	0.06	2018	9

Table S3 Performance comparison table of vanadium base positive electrode matrix materials in recent years.

Table S4 Equivalent circuit fitting parameter result table.						
Equivalent	Initia	l	after cycling			
parameter	$V_2O_5@V_2C$	V ₂ C	$V_2O_5@V_2C$	V ₂ C		
R _s / Ohm	3.12	5.01	3.93	8.22		
R _{surf} / Ohm	11.67	17.10	33.71	61.32		
R _{ct} / Ohm	51.23	82.63	88.27	184.6		

Table S4 Equivalent circuit fitting parameter result table.

Table S5 Equivalent circuit fitting parameter result table.						
Equivalent parameter	Hydrothermally treated V ₂ C	Pure V ₂ O ₅	V ₂ O ₅ @V ₂ C with 8.4 mg·cm ⁻² loading			
R _s / Ohm	9.73	8.72	7.38			
R _{surf} / Ohm	19.84	22.14	14.51			
R_{ct} / Ohm	45.31	128.37	63.03			

 Table S5 Equivalent circuit fitting parameter result table.

Reference

- 1. Z. Wang, K. Yu, Y. Feng, R. Qi, J. Ren and Z. Zhu, *ACS Appl. Mat. Interfaces*, 2019, **11**, 44282-44292.
- 2. Y. Guo, Y. Zhang, Y. Zhang, M. Xiang, H. Wu, H. Liu and S. Dou, *J. Mater. Chem. A*, 2018, **6**, 19358-19370.
- 3. Z. Cheng, Z. Xiao, H. Pan, S. Wang and R. Wang, *Adv. Energy Mater.*, 2018, **8**, 1702337
- 4. X. Zhu, W. Zhao, Y. Song, Q. Li, F. Ding, J. Sun, L. Zhang and Z. Liu, *Adv. Energy Mater.*, 2018, **8**, 1800201.
- L. Ma, H. Yuan, W. Zhang, G. Zhu, Y. Wang, Y. Hu, P. Zhao, R. Chen, T. Chen, J. Liu, Z. Hu and Z. Jin, *Nano Lett.*, 2017, 17, 7839-7846.
- 6. M. Zhang, Y. Yang, X. Zhang, M. Cheng, H. Yuan, K. Amin, A. Ahmad, L. Mao, W. Yan and Z. Wei, *Adv. Mater. Interfaces*, 2018, **5**, 1800766
- 7. X. Li, K. Ding, B. Gao, Q. Li, Y. Li, J. Fu, X. Zhang, P. K. Chu and K. Huo, *Nano Energy*, 2017, **40**, 655-662.
- X. Liang, C. Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier, H. Huang, C. J. Hart, D. Houtarde, K. Kaup, H. Sommer, T. Brezesinski, J. Janek and L. F. Nazar, *Adv. Energy Mater.*, 2016, 6, 1501636
- 9. Y. Song, W. Zhao, L. Kong, L. Zhang, X. Zhu, Y. Shao, F. Ding, Q. Zhang, J. Sun and Z. Liu, *Energy Environ. Sci.*, 2018, **11**, 2620-2630.